

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 1

Application Note: JN-AN-1135
Smart Energy HAN Solutions

This Application Note introduces a range of NXP solutions for the ZigBee PRO Smart
Energy market. The current Home Area Network offering includes the following
devices:

• A combined Energy Service Portal and Electricity Meter
• An In-Premise Display
• Standalone Meters (Electricity and Gas)
• A Range Extender

The accompanying software uses the ZigBee PRO SE clusters to transfer data
between the various devices in the network. These devices were developed using
NXP’s ZigBee PRO, JenOS, Smart Energy and JN516x Integrated Peripheral APIs.

1 Introduction
This Application Note demonstrates a typical Smart Energy (SE) Home Area Network (HAN),
for use in a domestic household, based on the NXP JN516x microcontrollers. The network
conforms to the ZigBee Alliance’s Smart Energy Profile (SEP) to provide the consumer with
the following information:

• Energy Consumption

• Price Tariffs

• Text Messaging

• Demand Response Load Control (DRLC) events

• Time

The Application Note is also capable of remotely updating device firmware via the Over-The-
Air (OTA) upgrade cluster.

This document uses terminology from ZigBee SEP v1.0 and therefore refers to an ‘Energy
Service Portal’ device and ‘Simple Metering’ cluster (known respectively as an ‘Energy
Service Interface’ and ‘Metering’ cluster in SEP v1.1).

1.1 System Overview
The example network consists of a combined Energy Service Portal and Electricity Meter
(ESP-EM), an In-Premise Display (IPD), a standalone Gas Meter, a standalone Electric
Meter and a Range Extender. The sections below provide a brief introduction to each node,
for advanced user information refer to Section 5.

1.1.1 Combined Energy Service Portal and Electricity Meter
The ESP is the ZigBee Co-ordinator and Trust Centre, and is responsible for forming the
network and controlling which nodes are allowed to join the network securely. In a typical
deployment, the ESP would have an out-of-band connection to the utility provider – this
connection is known as the ‘backhaul’. The purpose of the backhaul connection is to allow

 Smart Energy HAN Solutions

2 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

utility companies to remotely read metering data and provide dynamic information to the
consumer, such as new price tariffs or DRLC events.

The node also includes a simulated electricity meter.

1.1.2 In-Premise Display
The IPD is a Sleeping End Device that allows multiple ESP and Simple Metering server
endpoints to be queried. The node wakes up and gathers information from the network every
7 seconds. This information is then provided to the consumer via an LCD.

1.1.3 Standalone Electricity & Gas Meters
The standalone Meter nodes are permanently powered devices that act as routers once they
have joined the network. As with the ESP-EM, both nodes maintain a Simple Metering
server with a simulated load, which the IPD can then query.

1.1.4 Range Extender
The Range Extender node is a router that can be used for extending the range of the SE-
HAN. It is acts as template for Manufacturer Specific cluster or profile development.

1.2 Network Architecture
Figure 1 below shows one example of how an SE-HAN can be deployed:

Figure 1: Example SE-HAN Deployment

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 3

2 Compatibility
The software provided with this Application Note has been tested with the following
evaluation kit and SDK (Software Developer’s Kit) versions:

Product Type Part Number Version or Build Supported Chips
Evaluation Kit JN516x-EK001 - JN5168
JN516x ZigBee SE SDK Libraries JN-SW-4064 993 JN5168
SDK Toolchain JN-SW-4041 v1.1 JN5168

3 Loading the Application
Table 1 below shows a compatibility matrix of which JN516x Evaluation Kit expansion
boards can be used with this Application Note:

Device Type Carrier
Board

Expansion Board
(+ Carrier Board)

JN5168
USB

Dongle Generic LCD Lighting/Sensor

ESP-EM
(ESP_METER_NODE) ◌ ● ◌

IPD
(IPD_NODE_EVK) ●

Electricity Meter
(PLUG_METER_NODE) ◌ ● ◌ ◌

Gas Meter
(GAS_METER_NODE) ◌ ● ◌ ◌

Range Extender
(RANGE_EXT_NODE) ◌ ● ● ● ●

Table 1: Device Type – Evaluation Kit Compatibility Matrix
Key: ● – Preferred Hardware ◌ – Reduced Functionality

The application binaries, shown in brackets above, are located within each node’s build
folder, e.g. JN-AN-1135-Smart-Energy-HAN-Solutions\ESP_METER_NODE\Build. The
binaries must be loaded into the corresponding JN516x Evaluation Kit (JN516x-EK001)
boards using the JN51xx Flash Programmer. For more information refer to the JN51xx Flash
Programmer User Guide (JN-UG-3007).

! Caution: If loading this application for the first time the persistent data
must be cleared in each of the devices using the ‘Erase EEPROM’ option
in the JN51xx Flash Programmer. Failure to do so will result in
unpredictable network behaviour.

 Note: For backwards compatibility, the application note can be made to
support the JN5148 evaluation kit (JN514x-EK010) when combined with
a JN516x module upgrade kit (JN516x-UG001), for more information
refer to Section 6.2.

 Smart Energy HAN Solutions

4 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

4 Running the Demonstration
This section describes how to demonstrate the SE-HAN application once the JN516x
Evaluation Kit boards have been programmed with the relevant binaries (as described in
Section 3).

4.1 Start-up sequence
• Power up the ESI-EM

o The device will automatically form a network

• Power up the Gas Meter and Range Extender

o The nodes will join automatically and extinguish all LEDs once complete

• Power up the IPD and press the ‘Join’ button (SW1) to initiate the joining process

o The IPD will switch to the Simple Metering display once the joining and meter
discovery stages are complete

 Note 1: If any of the nodes fail to join ensure that the network context
data has been cleared, see Section 5.1 for more information.

 Note 2: If the IPD joins the network before the Gas Meter it must re-
discover all available meters before the new meter’s data can be queried
and displayed. To do this simply reset the IPD device.

4.2 Modifying a Meter’s Simulated Load
Each of the metering device types (including the ESP-EM) simulate a real-time load of a
fixed commodity type (electricity, gas and water). This real-time load is also known as
Instantaneous Demand and the unit of measure is specified by the meter’s commodity type
(kWh, m3 and L3 respectively).

If the meter binary is programmed into a JN516x Carrier Board and Generic Expansion
Board, the Instantaneous Demand attribute is updated with an ADC reading of the on-board
variable potentiometer. This can therefore be adjusted on-the-fly to simulate a change in
load.

4.3 Transferring Data with a Secured Tunnel
The Tunnelling cluster provides a secure transport mechanism for metering protocols (e.g.
DLMS/COSEM, IEC61107, NSI C12, M-Bus) within the payload of standard ZigBee frames.

Pressing switch SW4 will trigger the tunnel creation and tunnelled data transfer. Data will be
transferred between the ESI_EM and the EM nodes.

The NXP ZigBee PRO Smart Energy User Guide (JN-UG-3059) provides a more detailed
description of the Tunnelling cluster.

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 5

4.4 User Interface
The IPD has 7 display screens:

• Simple Metering (default)

• Price

• DRLC

• Messaging

• Message Confirmation

• Historical Data

• Settings

The left and right arrow buttons (SW3 & SW4 respectively) cycle through the different
screens. The remaining two action buttons (SW1 & SW2) perform a range of functionalities
and are detailed in the sub-sections below.

4.4.1 Simple Metering
The simple metering screen is the IPD’s default display and shows the following information:

• Time

• Instantaneous demand (numerically and graphically)

• Commodity type

• The current meter of interest (e.g. M1 is the 1st discovered meter)

• Battery Voltage

• Link Quality Indicator (LQI)

The ‘Mode’ button (SW1) cycles through displaying Instantaneous Demand, the estimated
CO2 equivalent and cost per hour on a button press. Alternatively holding the ‘Mode’ button
for two seconds will force the IPD to switch to the next available meter (providing multiple
meters have already been discovered in the HAN). The meter that is currently being
displayed is shown on the right-hand side of the screen, e.g. M1, M2, etc.

 Note: The meter’s identifier (e.g. M1, M2, etc.) is assigned in the order in
which the meters are discovered.

Pressing and releasing the ‘GetP’ button (SW2) will trigger the IPD to send an arbitrary ‘Get
Profile’ command to the price server, to satisfy SEP certification requirements. See Section
5.6 for more information on SEP certification.

4.4.2 Price
The price screen displays the following information about any currently scheduled prices:

• The unit cost per hour

• Start time

• Duration

 Smart Energy HAN Solutions

6 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

 Note: The unit of currency is configurable via the Settings screen for
demonstration purposes, not from a received price’s commodity type.

Pressing and releasing the ‘GetC’ or ‘GetS’ buttons (SW1 and SW2 respectively) will initiate
arbitrary ‘Get Current Price’ or ‘Get Scheduled Price’ commands to satisfy SEP certification
requirements. See Section 5.6 for more information on SEP certification.

4.4.3 DRLC
The DRLC screen displays the following information about any received DRLC events:

• Event ID

• Start time

• Duration

• Event queue identifier (e.g. active, scheduled, expired, etc.)

Pressing and releasing the ‘Opt’ button (SW1) will trigger the IPD to opt out of the currently
displayed DRLC event. To opt back in at a later time press and hold the ‘Opt’ button for two
seconds.

Pressing and releasing the ‘GetS’ button (SW2) will cause the IPD to send out a ‘Get
Scheduled Event’ command to the DRLC server.

4.4.4 Messaging
The message screen displays the text payload of any currently active message.

Pressing and releasing the ‘GetM’ button (SW1) triggers the IPD to send a ‘Get Last
Message Request’ to the messaging server.

Pressing and releasing the ‘Clear’ button (SW2) clears any currently active message from
the local message queue.

4.4.5 Message Confirmation
The IPD will switch automatically to the message confirmation screen if the ESP requests
user confirmation of a message or a message cancelation.

4.4.6 Historical Data
The historical screen displays a graphical representation of which price tier energy has been
consumed at. Historical data is maintained from when the IPD was last powered up and is
not persisted.

4.4.7 Settings
The settings screen allows the following parameters to be customised in real time to aid
demonstration purposes:

• Unit of currency

o USD

o EUR

o GBP

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 7

• Time

o 12 hour clock

o 24 hour clock

• Fast poll mode

o Triggers the IPD to send an arbitrary fast poll request command

Pressing and releasing the ‘Scroll’ button (SW1) scrolls through and highlights each of the
items listed above.

Pressing and releasing the ‘Select’ button (SW2) actions/increments the current selection.

5 Advanced User Information

5.1 Saving Network Context
All device types are protected from losing their network configuration during a power failure
by means of context saving. The required network parameters are automatically preserved
in non-volatile memory by the ZigBee PRO stack. On restart, the radio channel, Extended
PAN ID (EPID) and security keys are restored; a power failure is therefore transparent to the
user.

Application-specific information can also be preserved in non-volatile memory and is most
commonly used to preserve the application’s operating state.

During demonstration and development, it is often necessary to clear this context data. To
clear context on any of the JN516x-EK001 Evaluation Kit carrier boards, hold down button
‘SW1’ whilst resetting the device. In order to clear context on the JN5168 USB Dongle the
JN51xx Flash Programmer’s ‘Erase EEPROM’ functionality must be used due to the lack of
physical buttons.

5.2 Multiple Meter Support
The IPD is currently configured to read metering data from up to two meters. To increase
this further, increment the number of allocated endpoints in the ZPS configuration editor and
zcl_options.h file (SE_NUMBER_OF_ENDPOINTS).

5.3 Security Keys and MAC Addresses
All nodes within an SE network are required to complete security handshaking with the
network trust centre before certain communication links can be established – this process is
known as Key Establishment (KE). In order to complete KE, each node must have previous
knowledge of certain serialisation data, such as its MAC address and security key
information.

For ease of use during development, this serialisation data has been hardcoded within the
application – see Section 5.3.1 below. In a production environment, however, it is not
feasible to have a custom binary for every device – for more information on production
serialisation data, see Section 5.3.2.

5.3.1 Development
Each node’s serialisation data has been hardcoded within the application to aid
development. The device’s original MAC address remains intact but is superseded by the
application at runtime using the ZPS_vSetOverrideLocalMacAddress API. Table 2 below
details each device type and its corresponding hardcoded MAC addresses.

 Smart Energy HAN Solutions

8 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

Device Type MAC Address
IPD_NODE 0x0000000000000001

ESP_METER_NODE 0x0000000000000002
PLUG_METER_NODE 0x0000000000000003
GAS_METER_NODE 0x0000000000000004
RANGE_EXT_NODE 0x0000000000000005

Table 2: Hardcoded MAC Addresses

 Note: If you wish to introduce additional nodes into the network, further
test certificates must be obtained from Certicom and added to the
relevant node’s app_certificates.h file.

5.3.2 Production
In production, device specific information known as serialisation data is embedded within the
application binary (the same applies to an OTA image). For more information on how to
combine an application binary with serialisation data refer to the JET User Guide (JN-UG-
3081).

The application is required to load the serialisation data at runtime from Flash memory. To
enable this, modify each node’s existing build command to the following:

CERTIFICATES=PRODUCTION_CERTS

5.4 Over-The-Air Upgrades
The Application Note has OTA enabled into the ESP-EM and IPD nodes by default. The
relevant makefiles automatically run JET to modify the binaries post-build (for more
information refer to the JET User Guide (JN-UG-3081)). The IPD makefile also generates an
‘OTA upgrade’ version of the same binary. For instructions on how to set up and initiate an
OTA download see Sections 5.4.1 and 5.4.2 below.

5.4.1 OTA Download Configuration
The OTA download process requires both the OTA server and client to have external Flash
memory for storage of the upgrade image. The JN516x-EK001 Evaluation Kit carrier boards
all have external flash memory fitted but are not enabled by default. To enable use of the
external Flash chip, remove the Expansion Board and set the ‘SPI’ header to the ‘SSZ’
option.

 Note: When enabling the external Flash memory, pin 16 can no longer be
used as general purpose I/O (DIO0).

The IPD upgrade image must be programmed directly into the external flash of the OTA
server (ESP-EM). For instructions on how to program the carrier board’s external Flash refer
to the relevant Appendix in the JN51xx Flash Programmer User Guide (JN-UG-3007).

http://www.certicom.com/index.php/gencertregister

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 9

5.4.2 OTA Download Initiation
Press ‘SW2’ on the ESP-EM, once the IPD has joined the network, to initiate the upgrade
process. This will trigger the ESP-EM to notify the network that a new image is available for
download. The IPD will then trigger the download automatically providing the binary is of the
correct type.

 Note: For subsequent IPD upgrade binaries the ‘Application Version’
number can be set by modifying the ‘OTA_UPGRADE_VERSION’ parameter
in the IPD’s makefile.

5.5 Radio Recalibration
Although not enabled by default, all nodes have radio recalibration code included to
compensate for temperature variations during deployment. The radio recalibration occurs
during start-up and either on wake-up or periodically every minute (sleeping and
permanently powered devices respectively).

There is the potential to miss on-air packets whilst the periodic recalibration is taking place.
This, however, should not present a significant problem as any critical data will require an
APS acknowledgement. On failing to receive an acknowledgement, the source node will
automatically resend the data 1.6 seconds later.

In order to enable radio recalibration, uncomment the following lines of code, rebuild the
application and program the relevant nodes:

In each node’s makefile, uncomment the following library inclusion:
#APPLIBS += Recal

In each node’s main header file (e.g. app_meter_node.h), uncomment the following
definition:

//#define RADIO_RECALIBRATION

5.6 ZigBee Alliance SEP Certification
Additional functionality has been added to the ESP-EM and IPD nodes to aid SEP1.x
certification. This functionality can be enabled by uncommenting the following line in the
relevant node’s makefile:

#SE_CERTIFICATION

5.6.1 IPD Certification Functionality
The IPD has been modified to allow the device to pause once it has joined at the networking
layer, thus allowing various Key Establishment tests to be performed. To initiate this
functionality, press and hold ‘SW1’ for five seconds when attempting to join the network.
Pressing and releasing ‘SW1’ will then trigger the device to continue starting up as normal.

5.6.2 ESP-EM Certification Functionality
The ESP-EM device has been modified to allow the transmission of hardcoded packets that
are required for certain SEP test clauses, e.g. prices, DRLC events, messages, etc. The
remaining two buttons on the Generic Expansion Board are used to navigate the certification
state machine. ‘SW3’ increments the certification state (i.e. steps through the items in each
test clause) and ‘SW4’ executes the functionality (e.g. transmits the relevant packet). The

 Smart Energy HAN Solutions

10 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

currently supported test clauses for SE1.1b are shown in the ESP-EM’s app_certification.c
and app_certification.h files.

6 Developing with the Application Note
This section provides additional information that may be useful when developing with this
Application Note.

Before commencing development of a Smart Energy project, you are recommended to
familiarise yourself with the following documents:

[R1] - NXP ZigBee PRO Stack User Guide [JN-UG-3048]
[R2] - NXP JenOS User Guide [JN-UG-3075]
[R3] - NXP ZigBee PRO Smart Energy User Guide [JN-UG-3059]
[R4] - NXP ZigBee Cluster Library User Guide [JN-UG-3077]
[R5] - NXP JN516x Integrated Peripherals API User Guide [JN-UG-3087]
[R6] - ZigBee Smart Energy Profile Specification
[R7] - ZigBee Cluster Library Specification (ZCL)

The latest versions of [R1] to [R5] can be obtained from the NXP Wireless Connectivity
TechZone, while [R6] and [R7] can be found on the ZigBee Alliance web site
(www.zigbee.org).

6.1 Debugging the Application

6.1.1 Serial Debug
Each node in the Application Note prints out debug information by default via the UART. This
debug information can viewed by terminal emulator software, e.g. Tera Term. Connect the
node of interest to a laptop using the supplied Mini-USB cable and configure the terminal
emulator’s COM port as follows:

BAUD 115200
Data 8 bit
Parity None
Stop bit 1 bit
Flow control None

Debug can be disabled for production by setting the ‘Trace’ flag in the relevant node’s
makefile to zero. The makefile also defines a subset of debug flags that allows localised
debug statements to be enabled or disabled on mass, e.g. TRACE_START.

6.1.2 On-Air Packets
The demo uses the following pre-configured link key and channel mask should you wish to
capture on-air data packets with a protocol analyser (such as Ubilogix Ubiqua):

Pre-configured Link Key 0xFF112233445566778899AABBCCDDEE00
Channel Mask 11, 14, 15, 19, 20, 24 and 25

http://www.nxp.com/techzones/wireless-connectivity
http://www.nxp.com/techzones/wireless-connectivity
http://www.zigbee.org/

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 11

6.2 Building and Downloading the Application
This section provides application build instructions, if you simply wish to use the ready built
application binaries supplied in the zip, see Section 3.

The software provided with this Application Note is designed for use with JN516x
microcontrollers. JN516x applications can be built using the Eclipse IDE or makefiles.

In order to build the supplied software, the application’s folder must be placed in the
Application folder of the NXP/Jennic SDK installation:

<JN516x_SDK_ROOT>\Application
where <JN516x_SDK_ROOT> is the path into which the SDK was installed (by default, this
is C:\Jennic). The Application directory is automatically created when you install the SDK.

To build the applications and load them into JN516x-based boards, follow the instructions
below:

1. Ensure that the project directory is located in

<JN516x_SDK_ROOT>\Application

where <JN516x_SDK_ROOT> is the path into which the SDK was installed.

2. Start the Eclipse platform and import the relevant project files (.project and .cproject)
as follows:

a) In Eclipse, follow the menu path File>Import to display the Import dialogue box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory, browse to the Application directory and click OK.

d) In the Projects box, select the project to be imported and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left panel of

Eclipse and use the drop-down list associated with the hammer icon in the Eclipse
toolbar to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other node types.

 The binary files will be created in the relevant Build directories, the resulting filenames
indicating the chip type (e.g. JN5168) for which they were built.

 Note 1: When importing a ZigBee PRO application for the first time you
may need to perform a clean build. To do this select the relevant build
configuration as described above, right-click on the project and select
‘Clean Project’

Note 2: For backward compatibility with the JN5148 evaluation kit
(JN5148-EK010) add the following to each node’s build configuration or
makefile: JENNIC_PCB=DEVKIT2

4. Load the resulting binary files into the boards. You can do this using the JN51xx
Flash Programmer, which can be launched from within Eclipse or used directly (and is
described in the JN51xx Flash Programmer User Guide (JN-UG-3007)).

 Smart Energy HAN Solutions

12 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

6.3 Application Start-up
This section describes the typical start-up flow of an NXP ZigBee PRO device. Note that not
all devices sleep, hence the ‘Warm Start’ path is not always applicable.

Cold Start

Warm Start

vInitialiseApp()

Debug initialisation
Watchdog Event Trap

Enable High-Power Mode (optional)
Start the OS

vAppMain() PWRM_CALLBACK(Wakeup)

Debug initialisation

RAM held?

No

Restore MAC settings
Enable High-Power Mode (optional)

General hardware re-initialisation
Restart the OS

Yes

Overlay initialisation
Power Manager initialisation

Persistent Data Manager initialisation
Protocol Data Unit Manager initialisation

General hardware initialisation

APP_vInitialise()

Button initialisation
Clear context (optional)

Load context
Load the pre-configured link key (no context)

Initialise the Application Framework
Start the ZBP stack (context restore)
Start the poll timer (context restore)
Start the 1-second ZCL tick timer

Initialise the ZCL
Set device permissions (context restore)

Idle Loop:
Reset the Watchdog timer

Service the Power Manager

OS_ISR(APP_ButtonsDIOChanged)

Wake Timer ISR

Clear down interrupt flag and execute
the user-defined callback function

vWakeCallBack()

Activate the wake-up task

OS_TASK(APP_WakeUpTask)

Schedule the next wake-up event
Update the local clock

Start the poll timer
Activate the main task

Returning to the idle loop
after the main task completes

Sleep?

Sleep

PWRM_CALLBACK(PreSleep)

Save MAC settings
Disable hardware peripherals

Clear DIO interrupt flags

No

Yes

app_xxxx_node.c

app_start.c

File Key:

app_buttons.c

app_sleep_functions.c

Doze

ISR/Task
activates &
completes

Figure 2: Typical Start-up Flow

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 13

6.4 Advanced IPD Information

6.4.1 The Discovery Process
After joining the HAN, the IPD sends out a match descriptor request to discover the Key
Establishment server and, once located, attempts to complete Key Establishment. If
successful, the node then attempts to discover and bind to any other relevant cluster
servers. This entire process is detailed in Figure 3 below.

E_START_NETWORK

E_CONFIG

OS_TASK(APP_IPDTask)

Start stack or initiate rejoin
Increment the channel number for next time

Splash Screen

Button 1 released

E_DISCOVERING_NETWORKS

Attempt to join a network from
the list of discovered networks

E_JOINING_NETWORK

Handle joining event

Start the stack to generate a list of discovered networks

Joined as an End Device

 Failed to join event

 Rejoining

E_SEND_MATCH
Send out a match descriptor request
to discover the Key Establishment

server endpoint

E_WAIT_MATCH

Handle the match descriptor response

Key establishment not yet completed

E_STATE_START_KEY_ESTABLISHMENT

Initiate key establishment

E_STATE_WAIT_KEY_ESTABLISHMENT

Wait for key establishment to complete

Triggered by the endpoint callback (see app_zcl_task.c)

E_RUNNING

Normal running state

E_IEEE_ADDR_LOOKUP

Obtain the MAC address for each discovered
device (if applicable)

Metering and commodity types obtained for every device
Persist normal running state

 Failed to join event

Rejoining

List
exhausted?

No

Yes

E_SEND_MATCH
Send out a match descriptor request

to discover various
server endpoints

E_WAIT_MATCH

Handle the match descriptor response

Repeat for:
Time
Price

Messaging
OTA

Simple Metering

Discovery complete

E_IEEE_ADDR_LOOKUP_RESPONSE

Handle the IEEE lookup response

Repeat for all
discovered devices

(except the Trust Centre)

E_REQ_X_KEY

Request an APS key for each discovered
device (if applicable)

E_WAIT_X_KEY

Handle the APS key response

Repeat for all
discovered devices

(except the Trust Centre)

IEEE address obtained for every device

E_BIND_REQ

Bind to all discovered servers

E_BIND_RESP

Handle the bind response

Repeat for all
discovered clusters

APS keys obtained for every device

E_REQ_X_TYPE

Request the metering device and commodity
types of each discovered device

E_WAIT_X_TYPE

Handle the read attribute response

Repeat for all
discovered devices

Binding complete

Figure 3: IPD Main Task Flow Diagram

6.4.2 A Typical Wake-up Cycle
After the IPD enters the normal running state, it reads the time from the ESP, followed by
any active price and messaging information. The device then reads metering information
from the currently selected meter.

 Smart Energy HAN Solutions

14 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

Once the metering information is received, the screen is updated with the instantaneous
demand value. The device then enters sleep mode, waking up every 7 seconds to request
instantaneous demand. For more information on a typical wake-up cycle, refer to Figure 4.

O
S_

TA
SK

(A
PP

_I
PD

Ta
sk

)

E
_R

U
N

N
IN

G

W
ak

e-
up

Y
es

If
th

e
tim

e
is

 n
ot

 s
yn

ch
ro

ni
se

d
an

d
a

re
qu

es
t i

s
no

t c
ur

re
nt

ly
 u

nd
er

w
ay

,
re

ad
 th

e
E

S
P

’s
 ti

m
e

se
rv

er
 a

ttr
ib

ut
es

S
le

ep

E
_S

TA
R

T _
N

E
TW

O
R

K

R
ej

oi
ni

ng
?

N
o

H
an

dl
e

ap
pl

ic
at

io
n

ev
en

ts
e.

g .
 a

 b
ut

to
n

pr
es

s

eR
un

ni
ng

S
ta

te
 S

ta
te

 M
ac

hi
ne

E
_ I

N
IT

D
um

m
y

in
iti

al
is

at
io

n
st

at
e

to
 a

llo
w

 c
lu

st
er

s
to

 b
e

sw
itc

he
d

on
 a

nd
 o

ff
w

ith
 #

ifd
ef

s
in

 z
cl

_ o
pt

io
ns

.h

E
_ T

IM
E

R
ea

d
th

e
su

pp
ly

 v
ol

ta
ge

 a
nd

 e
xt

er
na

l t
em

pe
ra

tu
re

 s
en

so
r

(L
C

_ I
P

D
_N

O
D

E
 o

nl
y)

 u
si

ng
 th

e
A

D
C

(s
)

E
_S

A
M

P
LE

_ A
D

C

D
um

m
y

st
at

e
no

t e
na

bl
ed

 b
y

de
fa

ul
t b

ut
 c

an
 b

e
us

ed
 to

 re
qu

es
t a

m

es
sa

ge
 fr

om
 th

e
E

S
P

’s
 m

es
sa

gi
ng

 s
er

ve
r

E
_ M

E
S

S
A

G
E

_R
E

Q
U

E
S

T

D
um

m
y

st
at

e
to

 a
llo

w
 m

es
sa

ge
s

to
 b

e
re

ce
iv

ed
 fr

om
 th

e
E

S
P

 a
s

pa
rt

of
 e

ve
ry

 w
ak

e
cy

cl
e

E
_M

E
S

S
A

G
E

_R
E

C
E

IV
E

D

If
no

 p
ric

e
is

 c
ur

re
nt

ly
 a

ct
iv

e
an

d
a

re
qu

es
t i

s
no

t c
ur

re
nt

ly
 u

nd
er

w
ay

,
re

ad
 th

e
E

S
P

’s
 P

ric
e

se
rv

er
 w

ho
se

 c
om

m
od

ity
 ty

pe
 c

or
re

sp
on

ds
 to

 th
e

cu
rr

en
t m

et
er

 o
f i

nt
er

es
t

E
_ P

R
IC

E

If
a

re
qu

es
t i

s
no

t c
ur

re
nt

ly
 u

nd
er

w
ay

, r
ea

d
th

e
cu

rr
en

t m
et

er
 o

f
in

te
re

st
’s

 m
et

er
in

g
at

tri
bu

te
s

E
_M

E
TE

R
IN

G

U
pd

at
ed

 th
e

di
sp

la
y ,

 s
w

itc
h

on
 th

e
LE

D
 (L

C
_I

P
D

_N
O

D
E

 o
nl

y)
 a

nd

ac
tiv

at
e

a
tim

er
 fo

r 5
0m

s

E
_ L

E
D

_O
N

W
he

n
th

e
tim

er
 e

xp
ire

s,
 s

w
itc

h
of

f t
he

 L
E

D
 (L

C
_I

P
D

_N
O

D
E

 o
nl

y)

E
_L

E
D

_O
FF

N
ot

 e
na

bl
ed

 b
y

de
fa

ul
t .

If
a

fa
st

 p
ol

lin
g

pe
rio

d
is

 a
ct

iv
e ,

 c
on

tin
ue

re

ad
in

g
m

et
er

in
g

da
ta

 u
nt

il
th

e
pe

rio
d

ex
pi

re
s

E
_F

A
S

T_
P

O
LL

S
to

p
po

lli
ng

 fo
r d

at
a

fro
m

 th
e

pa
re

nt
, s

to
p

al
l t

im
er

s
an

d
se

t t
he

ap

pl
ic

at
io

n
sl

ee
p

fla
g

to
 tr

ue

E
_ S

LE
E

P

In
cr

em
en

t t
he

 c
ur

re
nt

 c
ha

nn
el

 o
f i

nt
er

es
t

In
iti

at
e

a
re

jo
in

H
an

dl
e

th
e

st
ac

k
ev

en
t

In
iti

at
e

di
sc

ov
er

y
an

d
co

nt
in

ue
st

ar
tin

g
up

 ..
.

Jo
in

ed
 a

s
an

 E
nd

 D
ev

ic
e

S
to

p
po

lli
ng

 fo
r d

at
a

fro
m

 th
e

pa
re

nt
, s

to
p

al
l t

im
er

s
an

d
se

t t
he

ap

pl
ic

at
io

n
sl

ee
p

fla
g

to
 tr

ue

Fa
ile

d
to

 jo
in

E
_S

E
N

D
_ M

A
TC

H

Figure 4: Typical Wake-up Cycle

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 15

6.4.3 Guidelines for Modifying the IPD
This section highlights the key areas of interest within the code, in case the developer
wishes to alter the IPD’s functional states or switch to a different user interface.

6.4.3.1 Functionality

6.4.3.1.1 Operational State Machine

The operational state machine (s_sDevice.eState) is located within app_ipd_node.c.
Additional states must be added to this switch statement if further operational modes are
required.

6.4.3.1.2 Display State Machine

The display state machine (app_eDisplayState) is located in app_display_x.c. Changes to
the display states should be made within the corresponding switch statement. The
app_display_x.c file also contains the display configuration functions.

6.4.3.2 User Interface

6.4.3.2.1 Keypad

The button mask is located in app_buttons.c. If required, additional buttons should be
added to the mask at the top of the file. An interrupt is generated if any of the buttons within
this mask are actioned. The Interrupt Service Routine will then generate a button event
which can be acted on in any of the operational states (app_event_handler.c).

 Smart Energy HAN Solutions

16 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

Appendix A - Source File Descriptions

Automatically Generated Files
Every node has several files that are automatically generated at build-time by the RTOS and
ZPS Configuration Diagrams. These files are not generally used by the developer but they
are located in the respective node’s \Source\Plugins folders, should they be of interest.

Common Files
A number of common files are used across all node types and are located within the
\Common\Source folder. This section gives a brief description of each of the common files.

Filename Description
app_buttons.c/h Contains the System Controller Interrupt Service Routine which handles the

button and wake timer interrupts. Also defines the button mask and assigns the
relevant DIO.

app_smartenergy_demo.h Contains global definitions for the SE HAN application.
app_zbp_utilities.c/h Contains commonly used debug functions.
os_msg_types.h Used to pass in application-specific ‘includes’ into the automatically generated

files of the RTOS and ZPS Configuration diagrams.
StackMeasure.c/h Used to track the maximum CPU stack usage for optimisation purposes.
app.zpscfg This is the ZigBee PRO Stack Configuration Editor, which is used to configure

generic network and node parameters. This includes profile, cluster, endpoint and
RF channel configurations. For more information, refer to the “ZPS Configuration
Editor” chapter of the ZigBee PRO Stack User Guide (JN-UG-3048).

ESP-EM Source Files
This section gives a brief description of the combined ESP and EM node’s source files,
located in the \ESP_METER_NODE\Source folder.

Filename Description
app_certificates.h Production and development certificates, public key, private key and pre-

configured link key information. For more information, refer to the “ZigBee SE
Security” section of the ZigBee PRO Smart Energy API User Guide (JN-UG-
3059).

app_certification.c/h Contains the certification state machine, used to send out hardcoded packets in
accordance with the various SEP test clauses.

app_event_hander.c/h Contains the main running state and, with it, the main stack and application event
handler.

app_meter_node.c/h Contains the main application task, the initialisation function and application state
machine, including the network formation functions.

app_start.c Contains the main function that is executed on device start-up (cold start). For
more information on a typical application start-up flow, see Section 6.1.

app_zcl_task.c/h Contains the ZigBee Cluster Library task which maintains the on-board RTC
clock and handles events based on incoming data packets, such as a ‘read
attribute request’.

zcl_options.h Used to customise which clusters and optional attributes the application uses.
App_ESP_METER_NODE_
JN51xx.oscfgdiag

This is the Real Time Operating System (RTOS) configuration diagram, which is
used to configure certain application building blocks, such as pre-emptive tasks,
software timers, mutexes and Interrupt Service Routines. For more information,
refer to the JenOS User Guide (JN-UG-3075).

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 17

Generic IPD Source Files
This section gives a brief description of the IPD node’s source files, located in the
\IPD_NODE\Source folder.

Filename Description
app_adc.h The header file for the ADC source files
app_certificates.h Production and development certificates, public key, private key and pre-

configured link key information. For more information, refer to the “ZigBee SE
Security” section of the ZigBee PRO Smart Energy API User Guide (JN-UG-
3059).

app_display.h The header file for the display source file, and includes defining the display states
and LC build’s character map.

app_event_hander.c/h Contains the main running state and, with it, the main stack and application event
handler.

app_ipd_node.c/h Contains the main application task, the initialisation function and application state
machine, including the network joining functions. This file also includes discovery
(match descriptor requests) and binding to other nodes/endpoints of interest.

app_led.h The header file for the LED driver source files.
app_sleep_functions.c/h Contains the wake-up and poll tasks, as well as any associated sleep and wake-

up functions.
app_start.c Contains the main function that is executed on device start-up (cold start), as well

as the pre-sleep and post-sleep callback functions. For more information on a
typical application start-up flow, see Section 6.1.

app_zcl_task.c/h Contains the ZigBee Cluster Library task which maintains the on-board RTC
clock and handles events based on incoming data packets, such as a ‘read
attribute request’.

zcl_options.h Used to customise which clusters and optional attributes the application uses.
App_IPD_NODE_JN51xx.os
cfgdiag

The RTOS configuration diagram is used to configure application building blocks
such as pre-emptive tasks, software timers, mutexes and Interrupt Service
Routines. For more information, refer to the JenOS User Guide (JN-UG-3075).

IPD_NODE_EVK Source Files
This section gives a brief description of the Evaluation Kit specific source files, located in the
\IPD_NODE\Source\EVK folder.

Filename Description
app_adc_evk.c The ADC source file used to read the supply voltage of the device.
app_display_evk.c The main source code for generating the display, specific to the EVK build.
app_led_evk.c Fall through functions to allow the LC code to be built from the same common file

base. The EVK build does not actually have any LED functionality.
Symbol.h Contains the LCD symbol maps for the display.
xsprintf.c/h Used to format LCD data.

IPD_NODE_LC Source Files
This section gives a brief description of the Low Cost Reference Design specific source files,
located in the \IPD_NODE\Source\LC folder.

Filename Description
app_adc_lc.c The ADC source file used to read the supply voltage and temperature sensor on

the device.
app_display_lc.c The main source code for generating the display, specific to the LC build.
app_lcd_driver.c/h The source code for communicating with the I2C LCD driver.
app_led_lc.c The LED driver source code.

 Smart Energy HAN Solutions

18 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

Standalone Meter Source Files
This section gives a brief description of the stand alone meter nodes’ source files, located in
the \GAS_METER_NODE\Source and \PLUG_METER_NODE\Source folders.

Filename Description
app_certificates.h Production and development certificates, public key, private key and pre-

configured link key information. For more information, refer to the “ZigBee SE
Security” section of the ZigBee PRO Smart Energy API User Guide (JN-UG-
3059).

app_event_hander.c/h Contains the main running state and, with it, the main stack and application event
handler.

app_meter_node.c/h Contains the main application task, the initialisation function and application state
machine, including the network joining functions.

app_start.c Contains the main function that is executed on device start-up (cold start). For
more information on a typical application start-up flow, see Section 6.1.

app_zcl_task.c/h Contains the ZigBee Cluster Library task which maintains the on-board RTC
clock and handles events based on incoming data packets, such as a ‘read
attribute request’.

zcl_options.h Used to customise which clusters and optional attributes the application uses.
App_x_METER_NODE_JN5
1xx.oscfgdiag

The RTOS configuration diagram is used to configure application building blocks
such as pre-emptive tasks, software timers, mutexes and Interrupt Service
Routines. For more information, refer to the JenOS User Guide (JN-UG-3075).

Range Extender Source Files
This section gives a brief description of the Range Extender node’s source files, located in
the \RANGE_EXT_NODE\Source folder.

Filename Description
app_certificates.h Production and development certificates, public key, private key and pre-

configured link key information. For more information, refer to the “ZigBee SE
Security” section of the ZigBee PRO Smart Energy API User Guide (JN-UG-
3059).

app_event_hander.c/h Contains the main running state and, with it, the main stack and application event
handler.

app_range_ext_node.c/h Contains the main application task, the initialisation function and application state
machine, including the network joining functions.

app_start.c Contains the main function that is executed on device start-up (cold start). For
more information on a typical application start-up flow, see Section 6.1.

app_zcl_task.c/h Contains the ZigBee Cluster Library task which maintains the on-board RTC
clock and handles events based on incoming data packets, such as a ‘read
attribute request’.

zcl_options.h Used to customise which clusters and optional attributes the application uses.
App_RANGE_EXT_NODE_
JN51xx.oscfgdiag

The RTOS configuration diagram is used to configure application building blocks
such as pre-emptive tasks, software timers, mutexes and Interrupt Service
Routines. For more information, refer to the JenOS User Guide (JN-UG-3075).

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 19

Appendix B - Build File Descriptions

Common Build Files
This section gives a brief description of the common build files, located in each node’s \Build
folder.

Filename Description
App_Stack_Size.ld Over-rides the default CPU stack size.
Makefile The main makefile used to build the binary for this node.

IPD Specific Build Files
This section gives a brief description of the IPD node’s build files, located in the
\IPD_NODE\Build folder.

Filename Description
App_Overlay_Discovery.ld Used to create an application overlay for the match descriptor and binding

functions (only included in JN514x applications).
App_Overlay_Display.ld Used to create an application overlay for the display and display driver functions

(only included in JN514x applications).
App_Overlay_Joining.ld Used to create an application overlay for the joining functions (only included in

JN514x applications).

Appendix C - Known Issues
ID Severity Description

lpap145 Minor
In certain circumstances, the IPD continually attempts to synchronise with the
ESP’s Price server on first-time start-up. The application automatically recovers
within two minutes.

Appendix D - Application Code Sizes
Node RAM Usage (kB) Flash Usage (kB)

ESP_METER_NODE 28.4 194.2
IPD_NODE_EVK 27.3 207.6

GAS_METER_NODE 20.3 170.8
PLUG_METER_NODE 20.4 172.0
RANGE_EXT_NODE 19.7 160.0

 Smart Energy HAN Solutions

20 © NXP Laboratories UK 2013 JN-AN-1135 (v4.2) 17-Dec-2013

Revision History
Version Notes
1.0-1.2 Releases with earlier titles

2.0 Revised version under the title “Smart Energy HAN Solutions”
3.0 Application Note expanded to include a Range Extender, standalone Meter and multiple IPD build

configurations.
3.1 Added SDK update for JN5148-Z01 chip variant
4.0 Updated for the JN516x chip family and evaluation kit
4.1 Added references to the Tunnelling cluster
4.2 Updated to support new LCD panel on LCD Expansion Board

Smart Energy HAN Solutions

JN-AN-1135 (v4.2) 17-Dec-2013 © NXP Laboratories UK 2013 21

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

 www.nxp.com

http://www.nxp.com/

	1 Introduction
	1.1 System Overview
	1.1.1 Combined Energy Service Portal and Electricity Meter
	1.1.2 In-Premise Display
	1.1.3 Standalone Electricity & Gas Meters
	1.1.4 Range Extender

	1.2 Network Architecture

	2 Compatibility
	3 Loading the Application
	4 Running the Demonstration
	4.1 Start-up sequence
	4.2 Modifying a Meter’s Simulated Load
	4.3 Transferring Data with a Secured Tunnel
	4.4 User Interface
	4.4.1 Simple Metering
	4.4.2 Price
	4.4.3 DRLC
	4.4.4 Messaging
	4.4.5 Message Confirmation
	4.4.6 Historical Data
	4.4.7 Settings

	5 Advanced User Information
	5.1 Saving Network Context
	5.2 Multiple Meter Support
	5.3 Security Keys and MAC Addresses
	5.3.1 Development
	5.3.2 Production

	5.4 Over-The-Air Upgrades
	5.4.1 OTA Download Configuration
	5.4.2 OTA Download Initiation

	5.5 Radio Recalibration
	5.6 ZigBee Alliance SEP Certification
	5.6.1 IPD Certification Functionality
	5.6.2 ESP-EM Certification Functionality

	6 Developing with the Application Note
	6.1 Debugging the Application
	6.1.1 Serial Debug
	6.1.2 On-Air Packets

	6.2 Building and Downloading the Application
	6.3 Application Start-up
	6.4 Advanced IPD Information
	6.4.1 The Discovery Process
	6.4.2 A Typical Wake-up Cycle
	6.4.3 Guidelines for Modifying the IPD

	Appendix A - Source File Descriptions
	Automatically Generated Files
	Common Files
	ESP-EM Source Files
	Generic IPD Source Files
	IPD_NODE_EVK Source Files
	IPD_NODE_LC Source Files
	Standalone Meter Source Files
	Range Extender Source Files

	Appendix B - Build File Descriptions
	Common Build Files
	IPD Specific Build Files

	Appendix C - Known Issues
	Appendix D - Application Code Sizes

