

 system house for distributed automation

CANopen User Manual

Software Manual

Edition May 2006

CANopen Software

  SYS TEC electronic GmbH 2006 L-1020e_12

In this manual are descriptions for copyrighted products which are not explicitly
indicated as such. The absence of the trademark ® and copyright © symbols does
not infer that a product is not protected. Additionally, registered patents and
trademarks are similarly not expressly indicated in this manual

The information in this document has been carefully checked and is believed to be
entirely reliable. However, SYS TEC electronic GmbH assumes no responsibility
for any inaccuracies. SYS TEC electronic GmbH neither gives any guarantee nor
accepts any liability whatsoever for consequential damages resulting from the use
of this manual or its associated product. SYS TEC electronic GmbH reserves the
right to alter the information contained herein without prior notification and
accepts no responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH offers no guarantee nor accepts any
liability for damages arising from the improper usage or improper installation of
the hardware or software. SYS TEC electronic GmbH further reserves the right to
alter the layout and/or design of the hardware without prior notification and
accepts no liability for doing so.

 Copyright 2006 SYS TEC electronic GmbH, D-07973 Greiz/Thueringen.
Rights - including those of translation, reprint, broadcast, photomechanical or
similar reproduction and storage or processing in computer systems, in whole or
in part - are reserved. No reproduction may occur without the express written
consent from SYS TEC electronic GmbH.

 EUROPE NORTH AMERICA

Address:
SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz
GERMANY

PHYTEC America LLC
203 Parfitt Way SW, Suite G100
Bainbridge Island, WA 98110
USA

Ordering
Information:

+49-3661-6279-0
sales@systec-electronic.com

1 (800) 278-9913
info@phytec.com

Technical
Support:

+49-3661-6279-0
support@systec-electronic.com

1 (800) 278-9913
support@phytec.com

Fax:
+49-3661-6279-99 1 (206) 780-9135

Web Site:
http://www.systec-electronic.com http://www.phytec.com

12th Edition May 2006

 Contents

 SYS TEC electronic GmbH 2006 L-1020e_12

Table of Contents

Preface.. 11

1 CANopen Fundamentals .. 13

1.1 What is CANopen? ...14

1.2 Communication Objects...17
1.2.1 PDO – Process Data Objects ...17
1.2.2 SDO – Service Data Objects ...28
1.2.1 Synchronization Objects..30
1.2.2 Time Stamp Object ..30
1.2.3 Emergency ...30
1.2.4 Layer Setting Service (LSS)..32

1.3 Network Management..35

1.4 CANopen Communication Profile ..40

1.5 Transmission Protocols ..41

1.6 Object Dictionary..41

1.7 Error Handling and Reporting ...42

1.8 Telegram Table (Predefined Connection Set)............................43

2 CANopen User Layer ... 45

2.1 Software Structure ...45
2.1.1 CANopen Stack ...47
2.1.2 CDRV – Hardware-Specific Layer48
2.1.3 CCM – Application-specific Layer49

2.2 Directory Structure ..52

2.3 Data Structures ...54

2.4 Object Dictionary..58
2.4.1 Object Dictionary for Standard I/O Devices59

2.5 Instanceability of the CANopen Layer65
2.5.1 Using the Instance Handle...66
2.5.2 Using Instance Pointers ...67

2.6 Hints for Creating an Application ..68
2.6.1 Selecting the Required Modules and Configuration68
2.6.2 Sequence of a CANopen application.....................................70

2.7 CCM Layer Functions..84
2.7.1 CcmMain Module..84

CANopen Software

  SYS TEC electronic GmbH 2006 L-1020e_12

2.7.2 CcmSdoc Module .. 107
2.7.3 CcmDfPdo Module ... 119
2.7.4 CcmObj Module .. 122
2.7.5 CcmLgs Module .. 125
2.7.6 CcmStore Module.. 128
2.7.7 CcmNmtm Module.. 137
2.7.8 CcmSnPdo Module ... 144
2.7.9 CcmSync Module .. 144
2.7.10 CcmEmcc Module... 147
2.7.11 CcmEmcp Module... 151
2.7.12 CcmHbc Module ... 158
2.7.13 CcmHbp Module ... 162
2.7.14 TgtCav Module.. 162
2.7.15 CcmBoot Module .. 173
2.7.16 CcmFloat Module.. 174
2.7.17 CcmStPdo Module .. 175
2.7.18 Ccm303 Module .. 181
2.7.19 CcmLss.. 188
2.7.20 Communication Parameters and Process Variables............ 202

2.8 Description of the CANopen Stack Functions 203
2.8.1 SDOS Module ... 203
2.8.2 SDOC Module... 225
2.8.3 PDO Module.. 247
2.8.4 PDOSTC-Module.. 265
2.8.5 OBD Module ... 268
2.8.6 COB Module ... 288
2.8.7 NMT Module... 295
2.8.8 NMT Slave Module... 297
2.8.9 NMT Master Module .. 300
2.8.10 Emergency Consumer Module.. 307
2.8.11 Emergency Producer Module.. 313
2.8.12 Heartbeat Consumer Module .. 318
2.8.13 Heartbeat Producer Module .. 325

2.9 Add-on modules for the CANopen protocol stack 331
2.9.1 MPDO Module - Multiplexed PDO.................................... 331
2.9.2 CcmMPdo Modul - Multiplexed PDO................................ 334

2.10 Meaning of Return Values and Abort Codes........................... 336
2.10.1 CANopen Return Codes.. 336
2.10.2 SDO Abort Codes.. 344
2.10.3 Emergency Error Codes .. 346

2.11 Configuration and Scaling... 348

 Contents

 SYS TEC electronic GmbH 2006 L-1020e_12

2.11.1 Configuration of the CANopen Stack348
2.11.2 Configuration of the Object Dictionary...............................371

2.12 Characteristics of Hardware, Operating Systems and
Development Environments...372

2.12.1 Selecting the Address Space for Data Storage372
2.12.2 Operating System PxROS ...372
2.12.3 Linux Operating System..376
2.12.4 Windows Operating System..383

3 Hints for Porting to Other Target Platforms 398

3.1 Global Definition File GLOBAL.H...399

3.2 Selecting the CAN Driver...402

3.3 CAN Bit Rate Definition ..404

3.4 Target-Specific Settings ...405
3.4.1 Hardware Properties Definition...405
3.4.2 Memory Management Definition, Standard Functions.......405
3.4.3 Definition of Target-Specific Functions..............................406

3.5 CPU Variable Byte Order Definition (Big Endian, Lit tle
Endian)...408

3.6 Typical Configuration of a CANopen Device as NMT Slave .409

3.7 Typical Configuration of a CANopen Device as NMT Master
 410

4 Notes on CANopen Certification ... 412

5 Glossary.. 414

6 Revision History CANopen V5.xx ... 416

Index ...421

CANopen Software

  SYS TEC electronic GmbH 2006 L-1020e_12

Index of Figures and Tables

Figure 1: Overview of the CANopen concept... 14

Figure 2: Communication model for PDOs .. 17

Figure 3: Mapping of Object Dictionary entries into a PDO 19

Figure 4: Data transmission of object data via SDO............................... 28

Figure 5: Structure of an emergency message .. 31

Figure 6: “Switch Mode Global” service .. 32

Figure 7: “Configure Bit Timing” service... 33

Figure 8: “Response to Configure Bit Timing” service 33

Figure 9: “Activate Bit Timing” service ... 33

Figure 10: “Configure Node ID” service .. 33

Figure 11: Response to “Configure Node ID” service.............................. 34

Figure 12: NMT state machine for CANopen devices.............................. 35

Figure 13: Response of the NMT slave to a Node Guarding remote frame36

Figure 14: Response from the NMT Slave to a Life Guarding remote
frame .. 37

Figure 15: Heartbeat message ... 38

Figure 16: Software structure overview .. 46

Figure 17: Data exchange between application and object dictionary...... 57

Figure 18: Sequence of a typical CANopen application 71

Figure 19: NMT state machine according to CiA DS-301 V4.02............. 76

Figure 20: Additional NMT states... 82

Figure 21: Sequence of a CANopen application....................................... 85

Figure 22: Call sequence for events in the LSS callback function.......... 106

Figure 23: Call Sequence for the callback function CcmCStoreLoadObject
for an OD area.. 135

Figure 24: Blinking cycles according to CiA DR303-3 (time in ms) 181

Figure 25: equence for NMT events in the NMT callback function....... 202

Figure 26: SDO Server Table .. 204

Figure 27: Interfaces for modifying communication parameters of a SDO
server.. 206

 Contents

 SYS TEC electronic GmbH 2006 L-1020e_12

Figure 28: Initiating an SDO download .. 211

Figure 29: SDO client table ... 226

Figure 30: Interface for changing SDO client parameters....................... 228

Figure 31: Initiating an SDO download .. 229

Figure 32: PDO mapping example of the variables at static PDO mapping266

Figure 33: Calling sequence of events for the object callback funktion
during a SDO access .. 287

Figure 34: Calling sequence of svents for the object callback funktion
during an access created from the application 287

Figure 35: Call Sequence of the CCM Functions with PxROS............... 375

Figure 36: Structure of CANopen Software under Linux 377

Figure 37: Call Sequence of the CCM Functions with Linux 379

Figure 38: CANopen Software Structure under Windows...................... 384

CANopen Software

  SYS TEC electronic GmbH 2006 L-1020e_12

Table 1: Example for mapping parameters for the first TPDO 18

Table 2: Mapping Table before changing the Mapping......................... 20

Table 3: Mapping table after Changing the Mapping............................ 21

Table 4: Communication parameter for the first TPDO 21

Table 5: Structure of a COB-ID for PDOs... 22

Table 6: Transmission type for TPDOs ... 26

Table 7: Transmission type for RPDOs ... 27

Table 8: SDO transfer types... 29

Table 9: Baud rate table according to CiA DSP-305............................. 34

Table 10: Node state of a CANopen device... 37

Table 11: Heartbeat consumer configuration... 39

Table 12: Structure of an Object Dictionary entry................................... 41

Table 13: Pre-defined Master/Slave Connection Set [1] 44

Table 14: CANopen Stack structure .. 48

Table 15: CCM Layer files .. 51

Table 16: Object Dictionary for standard I/O devices 64

Table 17: Meaning of instance macros as handle 66

Table 18: Meaning of Instance Macros as Handle................................... 67

Table 19: Guide for selecting the required software modules 69

Table 20: NMT state machine explanation (List of events and commands)77

Table 21: Supported communication objects in various NMT states [4] 78

Table 22: Parameters of the Structure tCcmInitParam 88

Table 23: Parameters of the structure tVarParam.................................... 94

Table 24: Description of the Argument Pointers Based on the Parameter
ErrorCode_p... 101

Table 25: Parameters of the Structure tNmtStateError 102

Table 26: Parameters of the Structure tPdoError 103

Table 27: Parameters of the structure tLssCbParam.............................. 105

Table 28: Description of LSS events ... 105

 Contents

 SYS TEC electronic GmbH 2006 L-1020e_12

Table 29: Parameters of the tSdocParam Structure................................ 109

Table 30: Parameters of the tSdocTransferParam structure................... 113

Table 31: Possible SDO transfer status values in tSdocState 116

Table 32: Parameters of the Structure tPdoParam 121

Table 33: Events for the Lifeguard Callback Function.......................... 127

Table 34: Assignment of the sub-indexes of object 0x1010 in the OD
section to be saved ... 131

Table 35: Parameters of the structure tObdCbStoreParam 135

Table 36: Tasks of the Callback Function CcmCbStoreLoadObject..... 136

Table 37: Description of NMT commands .. 140

Table 38: Master callback function events... 143

Table 39: Parameters of structure tEmcParam....................................... 151

Table 40: Events for callback function CcmCbEmpcEvent()................ 157

Table 41: Parameters of the Structure tHbdProdParam 160

Table 42: Event overview and description for heartbeat consumer....... 161

Table 43: Return codes for function TgtCavGetAttrib 172

Table 44: Equivalent function for static PDO mapping......................... 176

Table 45: Parameter of the tPdoStaticParam structure........................... 178

Table 46: States of the green LED according to CiA DR303-3............. 181

Table 47: States of the red LED according to CiA DR303-3 182

Table 48: Values for parameter State_p of function Ccm303SetRunState184

Table 49: Values for parameter State_p of function Ccm303SetErrorState186

Table 50: Configuration settings for LSS master and slave................... 188

Table 51: Effects of object properties on the SDO transfer 208

Table 52: Denial of SDO download initiation at the SDO server.......... 210

Table 53: Denial of SDO Segment Download at the SDO Server......... 210

Table 54: Denial of SDO upload initiation at the SDO server............... 212

Table 55: Denial of an SDO segment download at the SDO server...... 213

Table 56: Selecting the CRC calculation algorithm............................... 214

Table 57: Parameters of structure tSdosInitParam................................. 216

Table 58: Parameters of structure tSdosParam 222

CANopen Software

  SYS TEC electronic GmbH 2006 L-1020e_12

Table 59: Rejecting the download response by the SDO Client............ 229

Table 60: Rejecting an upload segment by the SDO client 230

Table 61: Selecting the CRC calculation algorithm 230

Table 62: Parameters of the tSdocInitParam Structure.......................... 232

Table 63: NMT Events Processed by SdocNmtEvent 235

Table 64: Parameters for the tSdocCbFinishParam Structure 242

Table 65: PDO Transmission Types and Events for Sending PDOs..... 249

Table 66: Events for calling a PDO callback function (Receipt)........... 251

Table 67: Events for calling a PDO callback function (Sending).......... 252

Table 68: OBD module configuration ... 269

Table 69: Partitions of the Object Dictionary .. 275

Table 70: Executable instructions to the Object Dictionary 276

Table 71: CANopen Node States ... 278

Table 72: Meaning of the Parameter Structure tObdCbParam 282

Table 73: Events of the callback function for object access.................. 284

Table 74: Meaning of the parameter of structure tObdVStringDomain 284

Table 75: Calculating the number of communication objects 289

Table 76: Parameters of the tCobParam structure 290

Table 77: Meaning of the Communication Object Types...................... 291

Table 78: Meaning of the NMT Commands.. 296

Table 79: Meaning of the tNmtmSlaveParam structure parameters...... 303

Table 80: Meaning of the tNmtmSlaveInfo structure parameters 305

Table 81: Parameters of structure tMPdoParam 333

Table 82: SDO Abort Codes .. 345

Table 83: Emergency Error Codes according to [4] 347

Table 84: Additional Parameters of the Structure tCcmInitParam for
Implementation of Multiple CAN Drivers 350

Table 85: Function Prefix for the CAN Driver 352

Table 86: Properties for Executing Process Functions 362

Table 87: Setting Time Monitoring for the PDO Module 364

Table 88: Additional Parameters in the Structure tCcmInitParam 374

 Contents

 SYS TEC electronic GmbH 2006 L-1020e_12

Table 89: CCM Thread Events under Linux.. 382

Table 90: Module Configuration of CANOPMA.DLL and
CANOPSL.DLL... 384

Table 91: Module Configuration of CCMMA.DLL and CCMSL.DLL 385

Table 92: Thread Evemts for CANopen under Windows...................... 395

Table 93: Memory Type Definition for Various Target Systems 401

Table 94: List of Currently Available CAN Drivers.............................. 403

Table 95: Bit Rate Configuration File Overview................................... 404

Table 96: List of Application-Specific Macros...................................... 405

Table 97: List of Target-Specific Functions .. 407

CANopen Software

  SYS TEC electronic GmbH 2006 L-1020e_12

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 11

Preface

This manual describes the application layer as well as the supported
communication objects of the CANopen stack for programmable CANopen
devices. Device profiles are profile-specific and described in a separate manual.

Section 1 provides general information on CANopen-related terms and
concepts.

Section 2 describes the implementation of the CANopen stack protocol by
SYS TEC electronic GmbH and gives detailed information about the
user functions, their interfaces and data structures.

Section 3 provides specific information on how to use and implement the
CANopen stack in a user application with regards to the user
hardware, the operating system and development environment.

CANopen Software

12  SYS TEC electronic GmbH 2006 L-1020e_12

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 13

1 CANopen Fundamentals

CANopen is a profile family for industrial communication with distributed
automation control devices based on the CAN-bus. It was developed by the
manufacturer and users association CiA1 and has been standardized since late
2002 as CENELEC EN 50325-4. CANopen has established itself in a number of
areas of industrial communication (e.g. mechanical engineering, drive systems
and components, medical devices, building automation, vehicle construction,
etc.). The fundamental communications mechanisms are described in so-called
Communication Profiles.

Frameworks complement the communication profile for specific applications.
This is how frameworks are defined for safety-compliant data transfer ("CANopen
Safety") or for programmable devices (e.g. PLCs). The so-called object directory
is the central element of every CANopen device and describes the device's
functionality.

1: CAN in Automation e.V. Founded in March 1992, CiA provides technical, product and

marketing information with the aim of fostering Controller Area Network’s image and
providing a path for future developments of the CAN protocol.

CANopen Software

14  SYS TEC electronic GmbH 2006 L-1020e_12

1.1 What is CANopen?

CANopen defines the application layer, a communication profile as well as
various application profiles.

CANopen-API

Device Profile
I/O Module

CiA DSP-401

Device Profile
Drives

CiA DSP-402

Application Layer
CiA DS-301

Application Profile

Communication Profile
CiA DS-301

PDO SDO SYNC Emergency

Object Dictionary

Communication Objects

CAN Bus

Framework
CiA DSP-302
CiA DSP-304

Framework
CiA DSP-302
CiA DSP-304

Figure 1: Overview of the CANopen concept

The application layer1 provides confirmed and unconfirmed services to the
application and defines the communication objects. Services are used to, for
example, request data from a server.

Communication objects are used for data exchange. Communication objects are
available for exchanging process and service data, for process or system time
synchronization, for error state supervision as well as for control and monitoring
of node states. These objects are defined by their structure, transmission types and
their CAN identifier. The specific parameters of a communication object, such as
the CAN identifier used for data transmission, the transmission type2 of a
message, the inhibit time3 or event time4 are specified by the communication
profile.

1: The interface to the application (API) is not defined by the application layer and depends on

the manufacturer-specific implementation.
2: The transmission type defines the properties for initiating a transmission. Available

transmission types are cyclic and acyclic as well as synchronous and asynchronous.
3: The inhibit time specifies the time that must elapse between two message transmission before

a new transmission can be initiated.
4: An asynchronous TPDO (transmit PDO) will be sent after the event time has elapsed.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 15

The order of and the rules for a data transmission between communication objects
are described by protocols (., download, ..).

The application layer and the communication objects do not define the
interpretation of the transmitted data, however. Interpretation of these data is
defined in the application profile respectively. the device profiles. Device profiles
are available for different device classes, such as I/O modules (CiA DSP-401),
drives (CiA DSP-402) and human-machine interfaces (HMI) (CiA DSP-403). The
standardization of device-specific data interpretation allows the building of
partially exchangeable devices.

Each CANopen device features an Object Dictionary (OD) as the main data
structure. The Object Dictionary serves as the primary data exchange medium
between the application and the CAN bus communication. Access to the OD
entries is possible from both sides; from the application as well as from the CAN
bus via specific messages. These OD entries can be considered as variables or
fields from the programmer’s point of view.

Each entry in the Object Dictionary has an index and a sub-index assigned to it.
Using this index structure it is possible to clearly address an OD entry. The
CANopen stack provides API functions1 to define entries in the Object Dictionary
as well as to read or write these entries. With the help of communication objects it
is also possible to access the Object Dictionary over the CAN bus.

Properties have to be defined for each entry in the Object Dictionary. These
properties include the data type (UNSIGNED8, and various attributes such as the
access rights (read-only, write-only, , the transmission of the data in a PDO2 or
supervision of the value range via its limiting values3.

The application layer and the communication profile are thoroughly described by
the CiA DS301 specification. Use of CANopen frameworks extensions of this
standard is described for specific applications. These frameworks define further
rules as well as specific communication objects. For example, the CiA DS301
defines network management objects (Node Guarding, Life . Use of these objects
for supervision of CANopen devices is described by the framework.

The following CANopen frameworks are available:

Framework for programmable CANopen devices (CiA DSP-302)

Framework for safety-relevant data transmission (CiA DSP-304)

1: Definition of the API functions is manufacturer-specific.
2: Entries can be „mapped“ into a PDO for transmission as process data object.
3: Only such values are written to an entry if they are within the limiting value ranges. All other

values will not be accepted.

CANopen Software

16  SYS TEC electronic GmbH 2006 L-1020e_12

Summary of advantages using CANopen:

vendor-independent standards

open structure

real-time communication for process data without protocol
overhead

modular, scalable structure that can be tailored to the needs of the
user within a wide range of networked automation control
systems

comprehensive functionality for communication and network
supervision tasks

support of system integrators by configuration and supervision
tools

profiles oriented on Interbus-S, Profibus and MMS

CANopen provides the following possibilities for auto configuration of CAN
networks:

easy and unified access to all device parameters

cyclic and event-driven data transfer

device synchronization especially for multi-device systems

SYS TEC electronic GmbH offers the following products and services to support
customers in the design of their CANopen applications:

Implementation of own CANopen master and slave nodes

Independent consultancy

Development of hardware and software

System integration and certification support

CAN / CANopen seminars

The engineers of SYS TEC electronic GmbH have many years of experience with
a variety of CAN applications and participate in the Special Interest Group SiG
"Programmable Devices" and "CANopen Safety".

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 17

1.2 Communication Objects

Communication objects 1 (COB) are used for transmission of data. The
communication profile defines the parameters of individual communication
objects.

Depending on the communication objects different transmission types and
protocols are available. Connection of communication objects over the CAN bus
is accomplished via CAN identifiers. The recipient of a communication object
must have the same COB identifier (COB-ID, CAN identifier) as the sender of
this message. Communication objects for unconfirming protocols (PDO,
Emergency) possess one COB identifier (COB-ID, CAN identifier) while
communication objects for confirming protocols (SDO) possess two COB
identifiers (one identifier each direction).

1.2.1 PDO – Process Data Objects

Process data objects (PDO) are especially suited for fast transmission of process
data. The communication model for PDOs defines one PDO producer and one or
multiple PDO consumers.

PDO-Producer

PDO-Consumer1

PDO-Consumer2

PDO-Consumer3

PDO-Consumer4

Figure 2: Communication model for PDOs

1: CANopen defines different communication objects that are specifically tailored to various

tasks and requirements. For example, process data are transmitted without protocol overhead
in a single CAN message. Service data objects use additional security mechanisms for
supervision of the data transfer between two nodes. The data contents of such an (SDO)
object can be transmitted via multiple CAN messages.

CANopen Software

18  SYS TEC electronic GmbH 2006 L-1020e_12

The reception of a PDO is not acknowledged by the PDO consumer. The PDO
producer transmits a PDO, such PDOs are called transmit PDOs (TPDOs). The
PDO consumer receives a PDO, consequently such PDOs are called receive PDOs
(RPDOs). Successful reception of a PDO is not acknowledged. Multiple PDO
consumers may exist for one PDO producer. A PDO producer is assigned to one
or multiple PDO consumers with the help of its COB-ID. This is also called PDO
linking1.

Transmission of a PDO is triggered by an event. Such events can be the change of
a variable that is represented by this PDO, expiration of a time or receipt of a
certain message. Process data is transmitted without protocol overhead directly in
a single CAN message. The length of a PDO can be between 0 to 8 data bytes.

PDOs are described by their mapping parameters and their communication
parameters. The maximum number of TPDOs as well as RPDOs that can be
defined is 512. A simple CANopen device typically supports 4 PDOs. The actual
number of PDOs is defined by the application or by the device profile for a
specific CANopen device.

1.2.1.1 Mapping Parameters – What is the structure of a PDO?

A PDO consists of adjacent entries in the object dictionary. The so-called
mapping parameters define the connection to these entries. A mapping parameter
defines the source of the data via index, sub-index and number of bits. The
destination, i.e. the placement within a CAN message, is defined by the order of
the mapping parameters in the mapping table as well as the number of bits for
each data.

Example:

Index Sub-index Object Data Description

0x1A00 0 4 Number of mapped entries

1 0x20000310 The entry at index 0x2000, sub-index 3, with
a length of 16 bit, is mapped to bytes 0 and 1
within the CAN message.

2 0x20000108 The entry at index 0x2000, sub-index 1, with
a length of 8 bit, is mapped to byte 2 within
the CAN message.

... ...

Table 1: Example for mapping parameters for the first TPDO

1: PDO linking can be supported by graphical configuration tools especially for more complex

applications requiring many connections between TPDOs and RPDOs.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 19

A CAN message can contains a maximum of 8 data bytes. This means that when
using a PDO, up to 8 object dictionary entries can be transmitted in one PDO.

Entry 1: UNSIGNED8 Var1

Entry 6: REAL32 Var6

Entry 3: UNSIGNED16 Var3

Entry 2: UNSIGNED8 Var2

Object Dictionary

Mapping parameter

Index, subindex, entry 3
Index, subindex, entry 1
Index, subindex, entry 2
Index, subindex, entry 6

PDO 1

COB identifier entry 3 entry 1 entry 2 entry 6

Generating the Mapping parameters

Communication Parameter

COB identifier
Transmission type

Inhibit time
Event timer

Figure 3: Mapping of Object Dictionary entries into a PDO

Mapping parameters are entries in the Object Dictionary (RPDOs: index 0x1600 –
0x17FF, TPDOs: 0x1A00-0x1BFF) and therefore can be read via the CAN bus
using service data objects (SDO) and, if permitted (if write access is enabled for
this entry), be modified as well. The PDO mapping can be done statically. In this
case mapping parameters can not be changed. Depending on the device profile or
application specification, it is also possible to change the PDO mapping of a
CANopen device at runtime. This is called dynamic mapping1. Modification of
mapping parameters is described in the example below:

1: Dynamical mapping requires that the modified mapping parameters are stored on a non-

volatile memory on the target device. If this is not possible (no non-volatile memory
available) the system configurator must restore the mapping upon network bootup.

CANopen Software

20  SYS TEC electronic GmbH 2006 L-1020e_12

Example of changing the mapping parameters for a TPDO:

Entries of the object dictionary are mapped into the first TPDO in the following
order and length:

Index 0x2000, sub-index 3, length 16 bit
Index 0x2000, sub-index 1, length 8 bit
Index 0x2000, sub-index 2, length 8 bit
Index 0x6000, sub-index 6, length 32 bit

Index Sub-index Object Data Description

0 4 Number of mapped entries

1 0x20000310 UNSIGEND16 at index 0x2000, sub-index 3

2 0x20000108 UNSIGEND8 at index 0x2000, sub-index 1

3 0x20000208 UNSIGEND8 at index 0x2000, sub-index 2

0x1A00

4 0x60000620 REAL32 at index 0x6000, sub-index 6

Table 2: Mapping Table before changing the Mapping

The resulting length of the CAN massage for transmission of this PDO is 8 bytes.

Now, instead of transmitting the entry at index 0x6000, sub-index 6 the index
entry 0x2000, sub-index 4 with a length of 16 bits is to be transmitted. Before
changing the mapping parameters the current configuration must be deactivated.
This is done by writing the value 0 to sub-index 0 in the mapping table. 1

Note:

Before performing a new mapping the user must ensure that sub-index 0 of this
mapping entry contains the value 0. If this is not the case, the SDO abort code
0x06010000 (unsupported object access) is returned upon an attempt to remap.

With the help of a SDO download the new configuration can be stored in the
mapping table. The new configuration becomes valid after writing the value 4 to
sub-index 0 in the mapping table.

1: Deactivating the current configuration causes all mapping parameter to become invalid and

they will be erased.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 21

Index Sub-
index

Object Data Description

0 4 Number of mapped entries

1 0x20000310 UNSIGEND16 at index 0x2000, sub-index 3

2 0x20000108 UNSIGEND8 at index 0x2000, sub-index 1

3 0x20000208 UNSIGEND8 at index 0x2000, sub-index 2

0x1A00

4 0x20000610 UNSIGNED16 at index 0x2000, sub-index 6

Table 3: Mapping table after Changing the Mapping

The resulting length of the CAN massage for transmission of this PDO is now 6
bytes.

1.2.1.2 Communication parameter - Which transmission types are
available for PDO?

The communication parameters define the transmission properties and the COB-
IB (CAN identifier) for transmission of a PDO. Configuration of the
communication parameters has a direct impact on the frequency of PDO
transmissions and hence on the CAN bus load.

Index Sub-index Object Data Description

0 Number on entries

1 COB-ID CAN identifier for the PDO

2 Transmission Type transmission type of the PDO

3 Inhibit Time minimum inhibit time for a TPDO

4 reserved reserved

1800h

5 Event Time maximum time between two TPDOs

Table 4: Communication parameter for the first TPDO

PDO communication parameters are entries in the object dictionary (for RPDOs:
index 0x1400 – 0x15FF, for TPDOs: index 0x1800-0x19FF) that can be read and,
if permitted, changed via the CAN bus with the help of service data objects
(SDO).

CANopen Software

22  SYS TEC electronic GmbH 2006 L-1020e_12

1.2.1.3 COB-ID (CAN identifier, sub-index 1)

The COB-ID serves for identification and definition of the PDO’s priority upon
bus access. Only one sender (producer) is allowed for each individual CAN
message. It is, however, possible that multiple receivers (consumers) for this
message exist.

Bit 31 30 29 28 – 11 10 - 0

11-bit-ID 0/1 0/1 0 000000000000000000 11-bit identifier

29-bit-ID 0/1 0/1 1 29-bit identifier

Table 5: Structure of a COB-ID for PDOs

Bit 30 defines the access rights, bit 30=0 means that a remote transmission request
(RTR) for this PDO is permitted. Using bit 31 the PDO can be deactivated for
further processing.

Note:

Since CiA DS 301 V4.02 a new procedure for changing of the mapping and
communication parameters applies.

Before bit 0 to 29 can be changed, you need to set bit 31 of the COB-ID to 1. By
doing this, the PDO becomes disabled and it is allowed to change the parameters.
The same procedure has to be followed for changing the transmission type (sub-
index 2).

The CANopen standard defines COB-IDs (default identifier) for the first 4 PDOs
depending on the node number (Predefined Connection Set – refer to section 1.8).
Communication between slave nodes is only possible via a CANopen master
when using these default identifiers. This, however, will result in an increased
CAN bus load since data exchange between two slave nodes requires sending the
message from the first slave to the master first and from there to the second slave.
CANopen offers the possibility to adjust the CAN identifier for a given
communication object. For example, the CAN identifier for a TPDO can also be
assigned to a RPDO. With this, it is possible to establish direct communication
between two slave nodes without a master node. This assignment of CAN
identifiers for PDOs is also called PDO linking.

This PDO linking is described in more detail using the following example:

Inputs 2 and 3 of device “A” are to be transferred to the outputs 1 and 3 of device
“B”. Both devices support complete mapping.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 23

Device A:
0x1000 Device Type
......
0x6000,1 Input 1, 8 Bit
0x6000,2 Input 2, 8 Bit
0x6000,3 Input 3, 8 Bit
....

TPDO Mapping Parameter:
0x1A00,0 Number of entries 2
0x1A00,1 1.Map Object 0x60000208
0x1A00,2 2.Map Object 0x60000308

TPDO Communication Parameter:
0x1800,0 Number of entries 2
0x1800,1 COB-ID 0x01C0
0x1800,2 Transmission Type 255
....

Resulting TPDO:
COB-ID DATA
0x01C0 Input 2 Input 3

CANopen Software

24  SYS TEC electronic GmbH 2006 L-1020e_12

Device B:
0x1000 Device Type
......
0x6200,1 Output 1, 8 Bit
0x6200,2 Output 2, 8 Bit
0x6200,3 Output 3, 8 Bit
....

RPDO Mapping Parameter:
0x1600,0 Number of entries 2
0x1600,1 1.Map Object 0x62000108
0x1600,2 2.Map Object 0x62000308

RPDO Communication Parameter:
0x1400,0 Number of entries 2
0x1400,1 COB-ID 0x01C0
0x1400,2 Transmission Type 255
....

Resulting RPDO:
COB-ID DATA
0x01C0 Output 1 Output 3

Transmit and receive PDOs utilize the same CAN identifier 0x01C0. Thus device
B automatically receives the PDO transmitted by device A. The recipient device B
analyzes the data in accordance to its mapping scheme: it passes the first byte to
output 1 and the second byte to output 3. On the other hand, the transmitting
device A stores its inputs 2 and 3 in exactly these bytes. This proofs the correct
input/output assignment and PDO mapping.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 25

1.2.1.4 Transmission Type, Sub-index 2

The transmission type of a TPDO defines under which circumstances data are
collected (e.g. input values read) and a PDO is transmitted. For RPDOs the
transmission type defines how data received in the PDO is put through to the
outputs of the device. Transmission can be initiated event-driven, synchronized or
in polling mode.

a) TPDOs

A TPDO can be transmitted cyclic or acyclic. Cyclic transmission takes place
after receipt of a cyclic SYNC message1. In this case, it is unimportant whether
input data has has changed or not. If the transmission type of a TPDO is set to
acyclic the corresponding TPDO is sent only after a certain event occurred. Such
an event can be the reception of a SYNC message, a change of the input data, the
expiration of an event timer period2 or a remote frame.

b) RPDOs

RPDOs will always be received. However, data contained in the RPDO will only
be put through to the corresponding outputs if certain events occur. Such an event
can be the reception of a SYNC message or a change of the receipt data compared
to the previous RPDO. As an option, the event timer (sub-index 5) can be
configured as supervision time for any transmission type. If a PDO is received
outside of the period configured with the event time, then the application will be
informed (see CcmCbError Section 2.7.1.8).

1: A SYNC message is a CAN message without data content and is used to synchronize

communication objects of other connected nodes. The SYNC producer is responsible for
cyclic transmission of the SYNC message.

2: An event timer can be used to initiate transmission of a PDO after the event time is expired
even if the data within the PDO have not changed. The event time is configured with the help
of sub-index 5.

CANopen Software

26  SYS TEC electronic GmbH 2006 L-1020e_12

Transmission
type

Data requisition Transmit PDO

0 Data (input values) are read upon
receipt of a SYNC message.

If the PDO data has changed
compared to the previous PDO
content then the PDO will be
transmitted.

1 – 240 Data is collected and updated upon receipt of the n-th number of
SYNC messages and then transmitted on the bus. The
transmission type corresponds to the value of n.

241-251 reserved

252 Data (input values) are read upon
receipt of a SYNC message.

253 The application continuously
collects and updates the input
data.

The PDO is transmitted upon
request via a remote frame.

254 The application defines the event for data requisition and
transmission of a PDO. An event that causes transmission of a
PDO can be the expiration of the event timer. The event timer
period is configured with sub-index 5. Transmission of a PDO
(independent from the event and if the event timer was
configured) always starts a new event timer period.

255 The device profile defines the event for data requisition and
transmission of the PDO. An event that causes transmission of a
PDO can be the expiration of the event timer. The event timer
period is configured with sub-index 5. Transmission of a PDO
(independent from the event and if the event timer was
configured) always starts a new event timer period.

Table 6: Transmission type for TPDOs

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 27

Trans-
mission
type

PDO receipt Data update

0 Data is analyzed upon receipt of a
SYNC message. If the data has
changed compared to the previous
RPDO, then it will be updated on the
outputs. Transmission of the SYNC
message is acyclic.

1 – 240

The PDO will always be
receipt. Analysis and, if
required, update of the data
occurs upon receipt of the next
valid SYNC message.

Data is analyzed upon receipt of the
n-th number of SYNC messages. If
the data has changed compared to the
previous RPDO, then they will be
updated on the outputs. The
transmission type corresponds to the
value of n. Transmission of the SYNC
message is cyclic.

241-251 reserved

252

253

reserved

254 The PDO will always be
receipt.

The application defines the event for
updating the output data.

255 The PDO will always be
receipt.

The device profile defines the event
for updating the output data.

Table 7: Transmission type for RPDOs

1.2.1.5 Minimum Inhibit Time, Sub-index 3

The inhibit time represents the minimum time that must elapse between
transmission of two TPDOs. This enables a reduction of the bus load and an
increase in data bandwidth.

The inhibit time is stored as UNSIGNED16 value in steps of 100 µs.

CANopen Software

28  SYS TEC electronic GmbH 2006 L-1020e_12

1.2.1.6 Event Time, Sub-index 5

a) TPDOs

After the event time has expired a TPDO is sent, even if the data content of the
PDO has not changed compared to the previous transmission. The event timer is
restarted after each transmission. Hereby it is unimportant whether the
transmission was caused by the expiration of the event time or the change of the
PDO data. This allows configuration of periodic PDO transmission. An inhibit
time, configured via sub-index 3, will not be considered.

Resetting the event time to zero (zero is the default value) results in deactivation
of the event timer. Transmission of the PDO is then only possible if the data
content changes. The inhibit time will be considered in this case.

b) RPDO

The event timer (sub-index 5) can be configured as supervision time if the
transmission type 254 or 255 is selected. If no PDO is received within the period
configured with the event time, then the application will be informed.

1.2.2 SDO – Service Data Objects

The Object Dictionary serves as primary data exchange medium between the
application layer and the communication layer. All data entries for a CANopen
device can be managed within the Object Dictionary (OD). Each OD entry can be
addressed using index and sub-index. CANopen defines so-called service data
objects (SDO) that are used to access these entries.

Index Subindex Attributes Data
0x2000 1 rw ...
0x2000 2 ro ...
...
0x6200 0 ro ...
...
...

Communication
Layer

SDO CAN Bus

Figure 4: Data transmission of object data via SDO

The communication model used for this data exchange is based on the client-
server structure. A read or write access is always initiated by a client and is served
by a server. Each CANopen device must have an SDO server to access its object
dictionary.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 29

SDO transmission requires two different COB IDs (CAN identifier). The first
COB ID is used to transmit the request from the client to the server. The server
sends its response back to the client using the second COB ID. Different COB IDs
must be used for each direction in order to avoid collisions on the CAN bus. The
communication profile defines the COB IDs that should be used for the default
SDP server. Each CANopen device may possess up to 127 SDO servers.

The CANopen standard CiA DS-301 defines different protocols for transmission
of SDOs.

Protocol Data Length Description

expedited transfer 1 – 4 bytes Data is already transmitted when initiating
the data transfer. This protocol must be
supported by each CANopen device.

segmented
transfer

1 - >64 kByte Only the length of the upcoming data
package is transmitted when initiating the
data transfer. Data is transmitted in
segments of 7 data bytes and one protocol
byte each. Each segment is confirmed by a
response message.

block transfer 1 - > 64 kByte Only the length of the upcoming data
package is transmitted when initiating the
data transfer. Data is transmitted in
segments of 7 data bytes and one protocol
byte each. Up to 127 segments are
transmitted within one block. Only
complete blocks are confirmed by a
response message. Lack of confirmation for
each segment increases the data throughput
on the bus especially when transmitting
larger data packages.

Table 8: SDO transfer types

Reading of OD entries is called ‘upload’, writing of entries is called ‘download’.
An ongoing transmission can be terminated by a server or a client with the help of
the abort transfer service.

CANopen Software

30  SYS TEC electronic GmbH 2006 L-1020e_12

1.2.1 Synchronization Objects

The synchronization mechanism used in CANopen is based on the producer-
consumer scheme. One producer exists in the network that cyclically transmits the
SYNC message. The SYNC message contains no data.

The identifier for this SYNC message is specified in object dictionary entry
0x1005. This entry furthermore configures whether the device is SYNC producer
or SYNC consumer.

Two other object dictionary entries specify the timing properties during
transmission. The time interval between two subsequent SYNC messages is
defined in entry Communication Cycle Time (0x1006). The time interval in which
the TPDOs must be transmitted at the latest after receiving a SYNC message is
configured with the Sync Window (0x1007) entry.

For each device supporting synchronous PDOs the SYNC message has the
following meaning:

TPDOs: update the data to be sent and subsequent transmission of the PDO
within the synchronization window

RPDOs: output the data received in the previous PDO during the most recent
synchronization interval to the corresponding outputs

1.2.2 Time Stamp Object

CANopen provides a mechanism that allows for synchronization of all network
nodes. This service is based on the producer-consumer model. One TIME
producer exists in the network that provides the common reference time for all
nodes (consumers).

The identifier for the TIME message is defined with object dictionary entry Time
Stamp Object (0x1012).

1.2.3 Emergency

CANopen supports the application to indicate error states over the CAN bus. Two
error categories can be distinguished:

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 31

Communication Error

The network layer can recognize and report the following errors:

- frequent occurrence of errors while transmitting messages

- bus-off state of the CAN controllers1

- Transmit buffer overflow

- Receive buffer overflow

- Loss of Heartbeat or Life-Guarding

- CRC error in SDO block transfer

Application Error

Application errors are errors such as short circuit, under-voltage, exceeding
temperature thresholds, code or RAM errors as well as conditions not
permitted such as alarms and disturbances.

The Application and network layer signalize such errors. However, it is the
application’s task to analyze, process and signalize these errors. CANopen
provides the communication object ‘Emergency’ to report such errors over the
CAN bus.

Data Identifier

0 1 2 3 4 5 6 7

Emergency
Error Code

Error
Register

0x080+

Node
Number Index 0x1003 0x1001

manufacturer-specific information

Figure 5: Structure of an emergency message

The DS-301 standard as well as the applicable device profiles for CANopen
define specific error codes for transmission of error states. The emergency
message can also contain manufacturer-specific data that further describes the
error. The transmitted error code indicates the error that occurred. The error
register assigns certain categories to groups of errors and indicates if errors still
exist within the corresponding category. If the error disappears, the CANopen
device will transmit a message with the error code reset (high portion equals zero).
At the same time, the data content of the error register that is also transmitted in
this message indicates if other errors still exist.

1: Each CAN controller has an internal error counter. This error counter is decremented after

successful communication. If the error counter exceeds certain error limits it causes the CAN
controller to shut off. It then will no longer participate on further communication unless the
application resets the CAN controller or its error counter.

CANopen Software

32  SYS TEC electronic GmbH 2006 L-1020e_12

Errors, that are caused by improper access to object dictionary entries or
interrupted transmission of SDO services, will be reported by an ‘abort SDO
transfer service’ message in CANopen.

1.2.4 Layer Setting Service (LSS)

In the CiA DSP-305 standard CANopen defines layer setting services (LSS) to
allow configuration of base parameters (baud rate, node number) for devices that
do not provide any means of external mechanical configuration (e.g. via DIP or
HEX switches). The LSS master can change the baud rate and node number of a
CANopen LSS slave over the CAN bus with the help of layer setting services
(LSS). First the LSS master renders all LSS slaves into configuration mode. Then
the LSS master transmits the new baud rate using the ‘Configure Bit Timing’
service. The LSS slave now responds with a CAN message that indicates whether
this new baud rate is supported by the LSS slave or not. If the LSS slave accepts
the new baud rate the LSS master sends the ‘Activate Bit Timing’ service to the
LSS slave. This informs the LSS slave to activate the new baud rate after a time
called ‘switch_delay’. After successful completion of this cycle the LSS master
renders the LSS slave back into operational mode.

The LSS service can also be used to change the node address of an LSS slave. For
this, the LSS master renders all LSS slaves into configuration mode again. Then
the LSS master transmits the new node address. The LSS slave now responds with
a CAN message that indicates whether this new node number is within the
supported range of node numbers for this node. Upon switching the LSS slave
back into operational mode, a software reset is released. This causes the LSS slave
to configure its communication objects based on the new node number (refer to
section 1.8).

Data Identifier DLC

0 1 2 3 4 5 6 7

0x7E5 8 0x04 mod reserved

Figure 6: “Switch Mode Global” service

mod: new LSS mode
0 = switch to operational mode
1 = switch to configuration mode

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 33

Data Identifier DLC

0 1 2 3 4 5 6 7

0x7E5 8 0x13 tab ind reserved

Figure 7: “Configure Bit Timing” service

tab: indicates the baud rate table to be used
0 = baud rate table as defined according to CiA DSP-305
1 ... 127 = reserved
128 ... 255 = can be defined by the user
ind: index within the baud rate table in which the new baud rate for the CANopen
device is stored

Data Identifier DLC

0 1 2 3 4 5 6 7

0x7E4 8 0x11 err spec reserved

Figure 8: “Response to Configure Bit Timing” service

err : error code
0 = operation completed successfully
1 = baud rate not supported
2 ... 254 = reserved
255 = special error code in spec
spec: manufacturer-specific error code (only if err = 255)

Data Identifier DLC

0 1 2 3 4 5 6 7

0x7E5 8 0x15 delay reserved

Figure 9: “Activate Bit Timing” service

delay: relative time until activating new baud rate [in ms]

Data Identifier DLC

0 1 2 3 4 5 6 7

0x7E5 8 0x11 nid reserved

Figure 10: “Configure Node ID” service

nid: new node address for the LSS slave (values permitted: 1 to 127)

CANopen Software

34  SYS TEC electronic GmbH 2006 L-1020e_12

Data Identifier DLC

0 1 2 3 4 5 6 7

0x7E4 8 0x13 err spec reserved

Figure 11: Response to “Configure Node ID” service

err : error code
0 = operation completed successfully
1 = node address invalid (only values 1 to 127 are permitted)
2 ... 254 = reserved
255 = special error code in spec
spec: manufacturer-specific error code (only if err = 255)

Table Index Baud Rate SYSTEC Definition in [cdrv.h]

0 1000 kBit/s kBdi1Mbaud

1 800 kBit/s kBdi800kBaud

2 500 kBit/s kBdi500kBaud

3 250 kBit/s kBdi250kBaud

4 125 kBit/s kbdi125kBaud

5 100 kBit/s kBdi100kBaud

6 50 kBit/s kBdi50kBaud

7 20 kBit/s kBdi20kBaud

8 10 kBit/s kBdi10kBaud

Table 9: Baud rate table according to CiA DSP-305

Note:

The clock speed for various CAN controllers might be different depending on the
hardware that is used. Thus differences in the register values for the corresponding
baud rate may occur.

The CiA DSP-305 standard also describes further LSS services. Description of
these services is not provided in this manual. Please refer to applicable
documentation provided by the CiA User’s group.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 35

1.3 Network Management

Several other network services for supervision of networked nodes are provided in
CANopen besides the services for configuration and data exchange. NMT
(network management) services require one CANopen device in the network that
assumes the tasks of an NMT master. Such tasks include initialization of NMT
slave, distribution of identifiers, node supervision and network booting among
others.

1.3.1.1 NMT State Machine

CANopen defines a state machine that controls the functionality of a device.
Transition between the individual states is initiated by internal events or NMT
master services. These device states can be connected to application processes.

power on

 Initialisation

 Pre-Operational

 Operational

Stopped

(11) (12) (10)

(8)

(7)

(6)
(7)

(8)(6)

Figure 12: NMT state machine for CANopen devices

In Initialization state, the CANopen data structures of a node are initialized by the
application. The CiA DS-301 standard defines various mandatory OD entries for
this task as well as specific communication objects required for that. In the
minimum device configuration, the identifier for these communication objects
must correspond to the so-called Pre-Defined Connection-Set (refer to section
1.8). The device profiles define further settings for the applicable device class.
The pre-defined settings of the identifiers for emergency messages, PDOs and
SDOs are calculated based on the node address (Node ID), which can be in the
range from 1 to 127, added to a base identifier that determines the function of the
individual object.

After Initialization is completed the node automatically switches into PRE-
OPERATIONAL (12) state. The NMT master will be informed about this state
change with the BOOTUP message sent by the corresponding node. In this state it
is not possible to communicate with the node using PDOs. However, the node can
be configured over the CAN bus using SDOs in PRE-OPERATIONAL state.
NMT services and Life Guarding are also available in this state.

CANopen Software

36  SYS TEC electronic GmbH 2006 L-1020e_12

The application as well as the available resources of the CANopen device
determine the amount of configuration via SDO over the CAN bus. For example,
if the CANopen device does not provide a non-volatile memory to store mapping
and communication parameters for PDOs and these parameters differ from the
default values, then these parameters must be transmitted to the node over the
network after initialization is completed.

After the configuration of these parameters by the application or the NMT master
is completed, the NMT service Start_Remote_Node (6) can be used to render the
node from PRE-OPERATIONAL state into OPERATIONAL state. This state
change also causes the initial transmission of all TPDOs independently of whether
an event for it is present. Each subsequent transmission of PDOs then always
takes place as a function of an event.

All CANopen devices also support the Stop_Remote_Node (7), Enter_PRE-
OPERATIONAL_State (8), Reset_Node (10), Reset_Communication (11) services.
Reset_Node is used to reset the application-specific data and the communication
parameter of the node.

The poweron values or values stored in non-volatile memory (if previously stored)
are used for reset values. The CANopen data structures are loaded with their
initial values.

If the NMT service Reset_Communication is used to change the state of a node,
then communication parameters in the CANopen stack are reset exclusively.

No communication via PDO and SDO is possible if the device is in STOPPED
state. Only NMT services, Node Guarding, Life Guarding as well as Heartbeat are
possible in this state.

1.3.1.2 Node Guarding

Node Guarding represents a means of node supervision that is initiated by the
NMT master. This service is used to request the node’s operational state and to
determine whether the node is functioning correctly. The NMT master transmits a
single Node Guard message to the slave in the form of a remote frame with the
CAN identifier 0x700 plus the node address of the NMT slave. As a response to
this remote frame, the NMT slave sends a CAN message back containing its
current NMT state and a one bit that toggles between two subsequent messages.

Data Identifier DLC

0

0x700 + Node Address 1 Status Byte

Figure 13: Response of the NMT slave to a Node Guarding remote frame

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 37

Status Byte Node State

0x00 (BOOTUP)

0x04 STOPPED

0x05 OPERATIONAL

0x7F PRE-OPERATIONAL

Table 10: Node state of a CANopen device

Bit 7 of the status byte always starts with a 0 and changes its value after each
transmission. The application is responsible for actively toggling this bit. This
ensures that the Node Guard response message from a slave is not just stored in
one of the Full-CAN channels. Thus the NMT master will get the confirmation
from the NMT slave node that the application is still running.

1.3.1.3 Life Guarding

As an alternative to Node Guarding node supervision can also be performed by
Life Guarding services. In contrast to the Node Guarding the NMT master
cyclically sends a Life Guard message to the slave in the form of a remote frame
with the CAN identifier 0x700 plus the node address of the NMT slave. As a
response to this remote frame, the NMT slave sends a CAN message back
containing its current NMT state and a one bit that toggles between two
subsequent messages. The NMT masters application is informed if an answer is
missing or in the event of an unexpected status. Furthermore, the slave can detect
the loss of the masters. The Life Guarding is started with the transmission of the
first Life Guard message of the masters.

Data Identifier DLC

0

0x700 + Node Address 1 Status Byte

Figure 14: Response from the NMT Slave to a Life Guarding remote frame

Meaning of the status byte corresponds to that of the Node Guarding message
(refer to Table 10).

The Life Guarding supervision on the NMT slave node is deactivated, if the Life
Guard time (object entry 0x100C in the object dictionary) or the Life time factor
(object entry 0x100D in the object dictionary) is equal to zero.

CANopen Software

38  SYS TEC electronic GmbH 2006 L-1020e_12

1.3.1.4 Heartbeat

Heartbeat is a supervisory service for which no NMT master is necessary.
Heartbeat is not based on remote frames, but does work according to the
Producer-Consumer model.

1.3.1.5 Heartbeat Producer

The Heartbeat producer cyclically sends a Heartbeat message. The Producer
Heartbeat Time (16-bit – value in ms), configured at object dictionary index
0x1017, will be used as cycle time between two subsequent Heartbeat messages.
As COB-ID 0x700 plus node address is used. The first byte of the Heartbeat
message contains the node status of the Heartbeat producer.

Data Identifier DLC

0

0x700 + Node Address 1 Status Byte

Figure 15: Heartbeat message

Meaning of the status byte corresponds to that of the Node Guarding message
(refer to Figure 13).

In contrast to the Node and/or Life Guarding, bit 7 of the status byte does not
change after each transmission. It always contains the value 0. This is also not
necessary here, because a Full CAN controller cannot send this message
automatically, since this protocol is not based on remote frames. It is the
application’s task to initiate the transmission of the Heartbeat message.

Setting the producer Heartbeat time (entry 0x1017 in the object dictionary) to
Zero disables the Heartbeat producer.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 39

1.3.1.6 Heartbeat Consumer

The Heartbeat consumer analyzes Heartbeat messages sent from the producer. In
order to monitor the producer, the consumer requires every producer’s node
number, as well as the consumer Heartbeat time.

The information is stored in the Object Dictionary at entry 0x1016. For every
monitored producer, there is a corresponding sub-entry that contains the node
number of the producer and the Consumer Heartbeat Time.

Bit 31...24 23...16 15...0

Value 0x00 Node number Consumer Heartbeat Time

Table 11: Heartbeat consumer configuration

The consumer is activated when a Heartbeat message has been received and a
corresponding entry is configured in the OD (value different from 0). If the
Heartbeat time configured for a producer expires without receipt of a
corresponding Heartbeat message, then the consumer reports an event to the
application.

The Heartbeat consumer is completely deactivated when the consumer Heartbeat
time is given a value of 0.

CANopen Software

40  SYS TEC electronic GmbH 2006 L-1020e_12

1.4 CANopen Communication Profile

The CiA DS-301 [4] CANopen communication profile defines the communication
parameter for communication objects that must be supported by each CANopen
device for this class. Beyond the communication profile supplemental device-
specific CANopen frameworks and device profiles are available.

The following CANopen frameworks have been released by the CiA
(selection):

- Framework for programmable CANopen devices (CiA DSP-302)

- Framework for safety-relevant data transmission (CiA DSP-304)

The following CANopen device profiles are available:

- Device profile for input/output modules (CiA DSP-401) [7]

- Device profile for drive controls (CiA DSP-402)

- Device profile for display and terminal devices (CiA DSP-403)

- Device profile for sensors and data acquisition modules (CiA DSP-404)

- Device profile for SPS according to IEC 61131-2 (CiA DSP-405)

- Device profile for encoder (CiA DSP-406)

- Device profile for proportional valves (CiA DSP-408)

CAN identifier of a COB, inhibit times and transmission type of a PDO, amongst
others, are considered communication parameters. The communication parameters
are part of the object dictionary and they can be read from and, if the applicable
access rights are granted, be written to by the user application. Some parameters
are explained in section 1.2, while information on other parameters can be found
in the previously discussed CANopen frameworks and device profiles.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 41

1.5 Transmission Protocols

Transmission of communication objects is defined by transmission protocols.
These protocols are also described in the CiA DS-301 CANopen communication
profile and are not a topic of this manual.

It should be noted, however, that the range of the realizable protocols can be
limited. This saves resources for code and data. Section 2.11 describes how this
resource reduction can be achieved.

1.6 Object Dictionary

The object dictionary (OD) is the connecting element between the application and
communication on the CAN bus, enabling data exchange from the application
over the CAN network. CANopen defines services and communication objects for
accessing the object dictionary. Each entry is addressed via index and sub-index.
The properties of an OD entry are defined by a type (UINT8, UIN16, REAL32,
visible string, and attributes (read-only, write-only, const, read-write, mappable).

The maximum number of OD index entries is 65,536, between 0 and 255 sub-
index entries are possible for each (main) index. Index entries are pre-defined by
the applicable communication profile or device profile, respectively. Type and
attributes for available sub-index entries within a main index may vary.

Index Sub-index Type Attribute

0 UINT8 const

1 UINT32 read-write

2

0x2000

3

Table 12: Structure of an Object Dictionary entry

Default values can be assigned to individual entries. The value of an entry can be
changed with the help of SDO communication if the attribute assigned to the entry
allows such access (read-write and write-only; not possible for read-only and
const). The value can also be changed by the application itself it the attributes for
the entry are read-write, write-only and read-only (not possible for const).

The OD is further divided in sections. The section with index 0x1000 – 0x1FFF is
used for definition of parameters for the communication objects and the storage of
common information, such as manufacturer name, device type, serial number etc.
Entries from index 0x2000 to 0x5FFF are reserved for storing manufacturer-
specific values. Device-specific entries, as defined by the device profile or
frameworks, follow at index 0x6000 and higher.

CANopen Software

42  SYS TEC electronic GmbH 2006 L-1020e_12

CiA DS-301 defines several mandatory entries that each CANopen device must
always possess. These entries are marked as mandatory. These mandatory entries
are supplemented by entries defined in the corresponding device profile.

The creation of an object dictionary is the subject of an additional manual (L-
number L-1024) provided by SYS TEC. Creation of an object dictionary from an
EDS (electronic data sheet) is supported by the OD-Builder1 (refer to manual L-
1022).

1.7 Error Handling and Reporting

Various mechanisms are provided in CANopen to report error events:

• Emergency object: This is a high-priority, 8-byte message that contains the
error information. Refer to section 1.2.3 for detailed description.

• Error register : This is a 1-byte object dictionary entry at index 0x1001. This
entry is provided to report the presence of an error and its type.

• Pre-defined error field: This is an error list which is stored in the object
dictionary at index 0x1003. This list contains the emergency error code as well
as device-specific information. The structure of this list shows the most recent
error at sub-index 1.

1: OD-Builder is a product developed by SYS TEC electronic GmbH.

 Fundamentals

 SYS TEC electronic GmbH 2006 L-1020e_12 43

1.8 Telegram Table (Predefined Connection Set)

CANopen defines default COB IDs (CAN identifier) for simple network
configuration with one master node and up to 127 slave nodes. These default
COB IDs depend on the service and the node number of the corresponding slave
device. A function code has been defined for each service. The resulting COB ID
is based on the function code and the node number1.

COB Identifier (CAN Identifier)

10 9 8 7 6 5 4 3 2 1 0

Function Code Node Number

1 The node number can be assigned locally or with the help of LSS services over the CAN bus.

CANopen Software

44  SYS TEC electronic GmbH 2006 L-1020e_12

Object
Function
Code

Node
Number

COB-ID Object Dictionary Index

Broadcast messages

NMT 0000 - 0 -

SYNC 0001 - 0x80 0x1005, 0x1006, 0x1007

TIME
STAMP

0010 - 0x100 0x1012, 0x1013

Point-to-point messages

Emergency 0001 1-127 0x81-0xFF 0x1014, 0x1015

TPDO1 0011 1-127 0x181-0x1FF 0x1800

RPDO1 0100 1-127 0x201-0x27F 0x1400

TPDO2 0101 1-127 0x281-0x2FF 0x1801

RPDO2 0110 1-127 0x301-0x37F 0x1401

TPDO3 0111 1-127 0x381-0x3FF 0x1802

RPDO3 1000 1-127 0x401-0x47F 0x1402

TPDO4 1001 1-127 0x481-0x4FF 0x1803

RPDO4 1010 1-127 0x501-0x57F 0x1403

Default
SDO (tx)

1011 1-127 0x581-0x5FF 0x1200

Default
SDO (rx)

1100 1-127 0x601-0x67F 0x1200

NMT Error
Control

1110 1-127 0x701-0x77F 0x1016, 0x1017

Table 13: Pre-defined Master/Slave Connection Set [1]

 User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 45

2 CANopen User Layer

The following section describes the data structures and API functions of the
SYS TEC electronic GmbH specific implementation of the CANopen standard
CiA DS-301. Support for additional CANopen standards is also implemented or
prepared. In addition hardware and compiler specific characteristics are taken into
consideration as well. The API offers interfaces that can be used for expansion of
device specific properties. The experience of SYS TEC engineers in integrating or
porting the CANopen stack in various customer applications has contributed to an
expansion of the standard as well. Therefore any deviations from the CANopen
standard are especially identified as such. Design, creation and configuration of an
Object Dictionary is described in a separate manual (refer to L-1024).

2.1 Software Structure

Before the individual API functions can be explained, a description of the
software structure and the file structure is necessary. This provides a foundation
for finding your way in later implementation. As a rule, the CANopen stack has a
divided structure for application specific and hardware specific modules.

The CANopen stack is divided up into individual modules. With the definition of
modules, the CANopen stack's parameters (function parameters, data parameters)
were structured so as to be scalable. A portion of the modules are to be considered
as core modules and are a mandatory component in the CANopen stack. Other
modules are not required for setting tasks. This refers mostly to CANopen
functions, which according to the CANopen standard can be implemented
optionally or as an alternative to other functions.

In order to leave out individual modules without complications, there can be no
lateral function call to another module within the modularized software layer,
rather only to modules positioned above or below (as a Callback function) 1.

The application specific layer "CANopen controlling" (CCM Module) controls the
interaction of the individual modules. The CCM layer is not absolutely necessary
for implementation in the application.However it provides a convenient interface
for use of multiple CANopen instances and encapsulates sequential function calls
of multiple API functions (i.e. initialization, definition of PDOs) in functions.

The hardware specific layer encapsulates the special properties of a CAN
controller or microcontroller. Porting to new hardware is simplified thereby and
can be reduced to an exchange of the transceiver for the CAN controller and the
microcontroller specific initialization.

1: With this it is possible to not include certain modules or services when creating a CANopen

application without getting error messages from the linker about unreferenced functions.

C
A

N
o

p
e
n

 S
o

ftw
a

re

 4
6


 S

Y
S

 T
E

C
 electro

nic G
m

b
H

 2
0

0
6

 L-1
0

2
0

e_
1

2

COB

HBC

CCM-Schicht

CANopen-Stack

CAN-Treiber-Schicht

Verzeichnisstruktur

\COPstack

\CCM

\CDRV

CCMMain Ccm
DfPdo

Applikation

SDOC LSSS

Instanztabelle

NMT

NMTS/NMTM

CCMXxx

PDO HBPSDOS

Ccm
Obj

OBD

Applikation

Instanztabelle

CCM

CDRV

Ccm
Store

Ccm
Lgs

Ccm
Nmtm

Ccm
Sync

Ccm
Emcc

Ccm
Emcp

Ccm
Hbc

Ccm
Hbp

EMCPEMCC

F

ig
u

re
 1

6
:

S
o

ftw
a

re
 stru

ctu
re

 o
ve

rvie
w

 User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 47

2.1.1 CANopen Stack

The CANopen stack is portable; this means it is implemented independent from
any hardware or application specific environment.

COB The COB layer provides services for transmission of communication
objects and therefore serves as a base layer that is required in any of
the configuration variants.

OBD The OBD module provides the global data structure for all CANopen
instances. All data structures, that are configurable by the user, are
created in this module. This includes the object dictionary as well as
tables for managing PDOs and SDO Server and Clients.

NMT This module creates the NMT state machine and calls the Callback
function for the NMT state change in the CCM module.

NMTS This module provides services for Node Guarding, Life Guarding and
Boot-up as NMT slave. It is not possible to use both NMTS and
NMTM at the same time within one CANopen instance.

NMTM This module provides services for Node Guarding, Life Guarding and
Boot-up as NMT master. It is not possible to use both NMTM and
NMTS at the same time within one CANopen instance.

HBP This module provides services for a Heartbeat producer. It is possible
to have a Heartbeat Producer and a Consumer both existing at the same
time in one CANopen instance. It is not possible to activate both
Heartbeat and Life Guarding at the same time for the given node.

HBC This module provides services for a Heartbeat Consumer. It is possible
to have a Heartbeat Producer and a Consumer both existing at the same
time in one CANopen instance. It is not possible to activate both
Heartbeat and Life Guarding at the same time for the given node.

PDO This module provides services to define and transmit PDOs. In
addition, services for Sync Producer and Consumer are generated here
as well.

PDOSTC This module provides the same services as the PDO module but
implements a static PDO mapping.

SDOS This module provides services to manage SDO Servers and service
data objects (SDO) as well as the protocols for transmission of service
data objects as server. The supported protocols (expedited, segmented,
block) are configurable.

CANopen Software

48  SYS TEC electronic GmbH 2006 L-1020e_12

SDOC This module provides services to manage SDO Clients and service data
objects (SDO) as well as the protocols for transmission of service data
objects as clients. The supported protocols (expedited, segmented,
block) are configurable.

LSSSLV This module provides services for configuration of bit timing and
module ID for a LSS slave.

LSSMST This module provides services for configuration of bit timing and
module ID for a LSS master.

EMCC This module provides services for an Emergency consumer. It is
possible to have an Emergency producer and consumer both existing at
the same time in one CANopen instance.

EMCP This module provides services for an Emergency producer. It is
possible to have an Emergency producer and consumer both existing at
the same time in one CANopen instance.

Table 14: CANopen Stack structure

2.1.2 CDRV – Hardware-Specific Layer

The CDRV modules make a single interface available to the CANopen stack for
various CAN controllers. The special properties and "peculiarities" of the CAN
controllers are thus taken into account in the CDRV driver. Porting to a new
hardware platform is enabled by creating or adapting the CDRV driver.

The CDRV drivers are instanceable. This solution becomes interesting for targets
with multiple CAN controllers. There multiple CANopen interfaces can be created
in order to serve multiple CANopen networks from a single application. The
implementation of multi-channel CAN cards on the PC (such as pcNetCAN, PCI-
CAN or USB-CANmodul) is then possible.

When creating/configuring the CANopen stack, the following cases should be
taken into consideration:

• The target supports various CAN controllers (e.g. microcontroller C167CR
with integrated CAN controller and an external CAN controller SJA1000). A
hardware driver is required for each CAN controller. One instance exists for
each hardware driver.

• The target supports N CAN controller (e.g. C167CS with two integrated CAN
controllers). However, a hardware driver with N instances is required for the
CAN controller.

Section 2.11 describes the settings for the selection and configuration of the
hardware drivers. For additional information on the CDRV Module refer to L–
1023 "CAN Driver Software Manual".

 User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 49

2.1.3 CCM – Application-specific Layer

The application specific layer "CANopen Controlling Module" (CCM Module)
controls the interaction of the individual modules. The CCM layer is not
absolutely necessary for implementation in the application.However, it provides a
convenient interface for use of multiple CANopen instances and encapsulates
sequential function calls of multiple API functions (i.e. initialization, definition of
PDOs) in functions.

The CCM layer contains a series of small function modules. When the application
is created, the user can attach suitable modules or use them as models for their
own expansions to the CCM layer. These expansions can effect the reaction to
certain events, which could occur during a CANopen process. In any case, it is not
necessary that the entire set of modules be attached to an application. 1

Module Description Functions

CcmMain.c This module contains the global
initializing and process functions
for CANopen as well as the
response to important events
(state change of the NMT state
machine, transmission errors,
state)

- CcmInitCANopen

- CcmShutDownCANopen

- CcmDefineVarTab

- CcmConnectToNet

- CcmProcess

- CcmCbNmtEvent

- CcmCbErrorEvent

CcmObj.c This module contains functions
for accessing the object
dictionary.

- CcmWriteObject

- CcmReadObject

CcmDfPdo.c This module contains a function
for defining the PDOs via a table.

- CcmDefinePdoTab

1: The way of not using software modules that are not required for a specific applications is

partially supported by the linkers. This means that a module can be included within an IDE
project but will not be included in the linking process when no function call to this module is
performed.

CANopen Software

50  SYS TEC electronic GmbH 2006 L-1020e_12

CcmStore.c This module defines functions for
storing object data from the object
dictionary in the non-volatile
memory.

- CcmInitStore

- CcmStoreCheckArchivState

- CcmCbStore

- CcmCbRestore

- CcmCbStoreLoadObject

CcmSync.c This module defines functions for
the SYNC consumer. It supports
the SYNC configuration.

- CcmInitSync

- CcmConfigSync

- CcmCbSync

CcmEmcc.c This module defines functions for
the Emergency consumer. It
supports the creation of a list
containing CANopen devices to
be minitored.

- CcmInitEmcc

- CcmEmccDefineProducerTab

- CcmCbEmccEvent

CcmEmcp.c This module supports
configuration of the Emergency
producer. It provides a function to
erase the Predefined Error Field.

- CcmConfigEmcp

- CcmSenEmergency

- CcmClearPreDefinedErrorField

- CcmCbEmcpEvent

CcmHbc.c This module defines functions for
the Heartbeat consumer. It
supports the creation of a list
containing CANopen devices to
be monitored.

- CcmInitHbc

- CcmHbcDefineProducerTab

- CcmCbHbcEvent

- CcmCbEmcpEvent

CcmHbp.c This module supports
configuration of the Heartbeat
producer.

- CcmConfigHbp

Ccm303.c This module defines functions
needed for indicating the internal
states of the CANopen device.
Two LEDs display the state
information according to the
CiA303 standard.

- Ccm303InitIndicators

- Ccm303ProcessIndicators

- Ccm303SetRunState

- Ccm303SetErrorState

 User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 51

CcmLss.c This module provides functions
for implementing the LSS master
service. The module also contains
the callback function of the LSS
slave service.

- CcmLssmSwitchMode

- CcmLssmConfigureSlave

- CcmLssmInquireIdentity

- CcmLssmIdentifySlave

- CcmCbLssmEvent

- CcmCbLsssEvent

Table 15: CCM Layer files

This list gives the names of a few important files in the CCM layer. The CCM
layer contents is expanded constantly and can therefore not be considered to be
complete. The description of functions, parameters and implementation can be
found in the applicable CCM module.

CANopen Software

52  SYS TEC electronic GmbH 2006 L-1020e_12

2.2 Directory Structure

Where to find which files?

Folder Contents

\Doku CANopen documentation

\Include This folder contains all interface files for CANopen.
The files global.h, cop.h must be included in the
application.

\CCM Files of the CCM layer.

\COPstack Files of the CANopen stack.

\CDRV Files of the hardware-specific layer.

 This folder contains predefined object dictionaries for
different device profiles. Each object dictionary
consist of 3 files that belong together; objdict.c,
objdict.h and obdcfg.h. These files can be
automatically created with the help of the ODBuilder
tool1. The selection of the object dictionary occurs
by defining the applicable include path within the
project settings. In addition the following subfolders
contain the corresponding EDS file and the project
file for the ODBuilder.

\DSP401_3P Object dictionary for DSP-401 with 3 RPDOs and 3
TPDOs, NMT slave

\DSP401_7P Object dictionary for DSP-401 with 7 RPDOs and 7
TPDOs, NMT slave

\O401P3M Object dictionary for DSP-401 with 3 RPDOs and 3
TPDOs, NMT master

\O401P7M Object dictionary for DSP-401 with 7 RPDOs and 7
TPDOs

\DS401_4PST
C

Object dictionary for DSP-401 static PDO mapping,
NMT slave

\Objdicts

\DSPManf Object dictionary for a manufacturer-specific object
dictionary.

1: The ODBuilder tool supports the generation of an object dictionary based on an EDS file.

The user can also define entries in the OD. The ODBuilder creates a new EDS file as well as
the C and header files necessary to create the CANopen data structures.

 User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 53

 This folder contains hardware-specific files (startup
files) for different targets (subfolders) required for
proper initialization.

\DK16_543 Files for Fujitsu Devkit16 with F543 CPU

\PC167 Files for phyCORE-167

\KC167 Files for KitCON-167

\KC505 Files for KitCON-505

\KC515 Files for KitCON-515

linux Files for linux

\Target

\PC565 Dateien für phyCORE-565 (Motorola MPC 565)

 ...

 This folder contains the project folders for various
example applications. One configuration file
(copcfg.h) is provided for each project. This file
defines the supported hardware, the supported
properties and protocols.

\Inf_16x_100
0

Example project for Infineon 16x with external
SJA1000

\Fuj_543 Example project for Fujitsu MB90F543 with internal
CAN controller

\Inf_505 Example project for Infineon 505 with internal CAN
controller

\Inf_515 Example project for Infineon 515 with internal CAN
controller

...

\Projects

The include files have been linked to the C files without any path indication. In
order to guarantee an error free compilation, the path must be defined to point to
the include folder and the Object Dictionary for the compiler or for the IDE
project.

CANopen Software

54  SYS TEC electronic GmbH 2006 L-1020e_12

2.3 Data Structures

In the following section there are explanations for the data structures. There are
data structures that are used for data exchange between the application and
CANopen. Other data structures are used for management and control of
processing cycles, functions or protocols within a module, and are only mentioned
to provide a complete listing.

The following data structures are used as application interfaces:

• Each CANopen instance1 has its own Object Dictionary (OD). The Object
Dictionary is the coupling element between the application and the
communication layer and contains all CANopen device data. Entries in the
Object Dictionary are addressed over index and sub-index. Entries can be read
or written over the CAN bus with the help of service data objects (SDO, refer
to section 1.2.2) or through the application with the help of API functions
(refer to sections 2.7.4 and 2.8.5). With the help of the OBD module's API
functions, the address and size of an entry can be determined, whereby access
to the object entry data is possible via pointers (refer to section 2.8.5). OD
entries can also be linked with application fields or variables. This is
advantageous in that access to data is possible without using one of the
CANopen stack's or a pointer's API functions. Transmission per SDO or
access with the help of API functions is not limited thereby. Due to versatility
in application and the alterability of these entries they are defined as Var entry
(variable object entry).

As mentioned above, these Var entries can be embedded in PDOs; under the
condition that mapping of the entries with the attribute kObdAccPdo is
allowed.

In order to register a fast and simple modification of a variable with the
application, a variable callback function that includes an argument pointer can
be provided when defining Var-Entries. Modification of an entry over the
CAN bus via a PDO results in the call of the respective PDO callback
function, whereby the argument pointer is given as the parameter.

1: The CANopen stack and the hardware drivers are instanceable. This means that the

functional contents of CANopen can be utilized in several data instances. This makes it
possible to use various independent CANopen interfaces on the same target (e.g. device with
more than one CAN controller).

 User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 55

The Object Dictionary is organized as a table. Each table entry corresponds to
an index. This index table is located in the ROM. Within an index there are
additional tables with an entry for each sub-index. The sub-index table can be
stored in either the ROM or the RAM. The design of the table has been
optimized for access speed and memory space requirements. Creation of an
Object Dictionary is supported with the help of macros. It can be created
manually or by help of the ODBuilder tool.

An entry for a sub-index contains the type of the Object Dictionary, right of
access, start value, range values and the data pointer. In the case of a static
Object Dictionary, the management structure for the Object Dictionary is
created during compilation.

Modification of the table during runtime is not possible. Therefore any later
use of an entry must be known about ahead of time. In the case of a dynamic
OD, the management structures of the Object Dictionary are created during
runtime.

The application's variables and fields, which are to be transmitted with the
help of PDOs or which were declared as DOMAIN or strings, have to be
registered in the Object Dictionary Var entries1. The CCM layer makes the
function CcmDefineVarTab available for this purpose, which automates this
procedure with the help of tables.

• Structures are used for transferring complex parameters to functions. The
structures are explained as function parameters. Prior to a function call, a
structure of this kind must be initialized.

Structures and tables for the management of internal cycles and settings:

- For the management of PDOs, SDO server, SDO client, …, internal tables
are used. The size of the tables (i.e. number of entries) is based on the
defined number of PDOs, SDO servers etc. (refer to section 2.11). The
tables are created with the compiler when compiling the Object
Dictionary. In order to conserve memory resources and processing time,
individual entries fro the tables are connect directly with the entries of the
Object Dictionary. The tables are initialized with the initialization function
of the relevant module.

- Each module contains a global instance table. The instance table contains
all of the variables for module. The variables are used to store processing
states and parameters within a module. Except for in the case of the CCM
module, an instance table is only valid within a module and is therefore

1: When creating the Object Dictionary the data structures for for managing the variables are

created but NOT the memory (this means the variable or the field) for storing the data.

CANopen Software

56  SYS TEC electronic GmbH 2006 L-1020e_12

declared to be "static". Creation and modification of entries for a table is
supported by macros (refer to section 2.5).

User Layer

 SYS TEC electronic GmbH 2006 L-1020e_12 57

Object Dictionary

Index Subindex Entry
0 UINT8
1 UINT8
2 UINT16

0x2000

3 UINT16
...

0 UINT8
1 REAL32

0x2010

2 DOMAIN
...

0 UINT8
1 UINT8

0x6000

2 UINT8
...

Application

Read SDO Upload
Parameter: Index, Subindex

 Write SDO Download
Parameter: Index, Subindex

 Read

CcmReadObject
ObdReadEntry

Parameter: Index, Subindex

CcmWriteObject
ObdWriteEntry

Parameter: Index, Subindex

BYTE Write

CANopen API

float

BYTE

CcmDefineVarTab
ObdDefineVar

Parameter: Index, Subindex
Pointer, Size, Callback-
Function, Pointer to Callback-
Parameter

 Define

 Write

Read

CAN Bus

Write and Read with
the help of SDO

Transmit with the
help of PDOs

Figure 17: Data exchange between application and object dictionary

CANopen Software

58  SYS TEC electronic GmbH 2006 L-1020e_12

2.4 Object Dictionary

The Object Dictionary is defined in three files objdict.c, objdict.h and obdcfg.h.
An exact description for the Object Dictionary creation is given in manual
L-1024.

CANopen software comes in three standard variants. These variants are listed in
the following sections. In the listing of objects, abbreviations are used for the
object type, the data type and for the attributes. These abbreviations have the
following meanings:

Object Types:

var Object contains a value that can be accessed per SDO or
from the application (variable).

Data Types:

u8 Unsigned 8-bit

u16 Unsigned 16-bit

u32 Unsigned 32-bit

i8 Integer 8-bit

i16 Integer 16-bit

i32 Integer 32-bit

vstr Visible String

Attribute:

ro read only; object can be read per SDO and read or written
from the application.

rw read write; object can be read or written per SDO or from
the application.

wo write only; only a write to the object is possible per SDO or
from the application.

const constant; object can only be read and not written per SDO
or from the application.

mapp object can be mapped to a PDO

store object can be saved in non-volatile memory (refer to
section 2.7.6)

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 59

2.4.1 Object Dictionary for Standard I/O Devices

There are several Object Dictionaries available for standard I/O devices. The OD
ds401_3p contains 3 TPDOs and 3 RPDOs; the OD ds401_7p contains 7 TPDOs
and 7 RPDOs. Otherwise the two Object Dictionaries are the same in terms of all
other objects. The OD o401p3m has 3 TPDOs and 3 RPDOs, but as a CANopen
Master it does not contain the objects 0x100C and 0x100D. Instead it contains the
supplemental objects 0x1016 (for the Heartbeat Consumer) and 0x1280 (for the
first SDO Client). O401p7m resembles o401p3m, except that it has 7 TPDOs and
7 RPDOs. The CANopen Kits have two ODs available to them, o401p2ks (for the
Slave) and o401p2km (for the Master). Both of these contain only 2 TPDOs and 2
RPDOs and the Master is not equipped with a Heartbeat Consumer (Object
0x1016 is absent).

Index Sub-
index

Name Object
Type

Data
Type

Attribute Default
Value

0x1000 device type var u32 ro 0x000F-
0191

0x1001 error register var u8 ro 0

 predefined error field array

0 number of errors var u8 ro, rw;
write 0
to erease

0

0x1003

1…4 standard error field var u32 ro 0

0x1005 COB-ID SYNC var u32 rw, store 0x080

0x1006 communication cycle
period

var u32 rw, store 0

0x1007 synchronous window
length

var u32 rw, store 0

0x1008 manufacturer device
name

var vstr const “CANopen
Slave”

0x1009 manufacturer hardware
version

var vstr const “V1.00”

0x100A manufacturer software
version

var vstr const “V5.xx”

0x100C
23

 guard time var u16 rw, store 0

23 : Not present in the ODs for the Master o401p3m, o401p7m and o401p2km.

CANopen Software

60  SYS TEC electronic GmbH 2006 L-1020e_12

Index Sub-
index

Name Object
Type

Data
Type

Attribute Default
Value

0x100D
1

 life time factor var u8 rw, store 0

 store parameters array

0 largest sub-index
supported

var u8 const 3

1 save all parameters var u32 rw 0

2 save communication
parameters

var u32 rw 0

0x1010

3 save application
parameters

var u32 rw 0

 restore default
parameters

array

0 largest sub-index
supported

var u8 const 3

1 restore all default
parameters

var u32 rw 0

2 restore communication
default parameters

var u32 rw 0

0x1011

3 restore application
default parameters

var u32 rw 0

0x1012 COB-ID time stamp
message

var u32 rw, store 0x100

0x1014 COB-ID emergency
message

var u32 rw, store 0x8000-
0000

0x1015 inhibit time EMCY var u16 rw, store 0
 consumer heartbeat

time
array

2.4.2

0 number of entries var u8 const 5

0x1016
24

1..5 consumer heartbeat
time

var u32 rw 0

0x1017 producer Heartbeat
time

var u16 rw, store 0

24 : Only present in the ODs for the Master o401p3m and o401p7m.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 61

Index Sub-
index

Name Object
Type

Data
Type

Attribute Default
Value

 identity object record

0 number of entries var u8 const 4

1 vendor ID var u32 ro 0x3F

2 product code var u32 ro 0

3 revision number var u32 ro 0x0A05

0x1018

4 serial number var u32 ro 1

 client SDO parameter record

0 number of entries var u8 const 3

1 COB-ID client to
server

var u32 rw, store 0x8000-
0000

2 COB-ID server to
client

var u32 rw, store 0x8000-
0000

0x1280
25

3 node ID server var u8 rw, store 0x00
 receive PDO parameter record

0 largest sub-index
supported

var u8 ro 5

1 COB-ID used by PDO var u32 rw, store 0x8000-
0000

2 transfer type var u8 rw, store 255

3 inhibit time var u16 rw, store 0

0x1400

5 event timer var u16 rw, store 0

0x14xx
 receive PDO mapping record

0 number of mapped
application objects in
PDO

var u8 rw, store 0

0x1600

1..8 PDO mapping for the
n-th application object
to be mapped

var u32 rw, store 0

0x16xx

25 : Only present in the ODs for the Master o401p3m, o401p7m and o401p2km.

CANopen Software

62  SYS TEC electronic GmbH 2006 L-1020e_12

Index Sub-
index

Name Object
Type

Data
Type

Attribute Default
Value

 transfer PDO
parameter

record

0 largest sub-indexsub-
index supported

var u8 ro 5

1 COB-ID used by PDO var u32 rw, store 0x8000-
0000

2 transfer type var u8 rw, store 255

3 inhibit time var u16 rw, store 0

0x1800

5 event timer var u16 rw, store 0

0x18xx
 transfer PDO mapping record

0 number of mapped
application objects in
PDO

var u8 rw, store 0

0x1A00

1..8 PDO mapping for the
n-th application object
to be mapped

var u32 rw, store 0

0x1Axx

 read input 8-bit array

0 number of inputs 8-bit var u8 const 16

0x6000

1..16 read input var u8 ro, mapp 0
 read input 16-bit array

0 number of inputs 16-
bit

var u8 const 8

0x6100
26

1..8 read input var u16 ro, mapp 0
 write output 8-bit array

0 number of outputs 8-
bit

var u8 const 16

0x6200

1..16 write output var u8 rw, mapp 0

26 : Not present in the ODs for the CANopen Starter Kit o401p2ks and o401p2km.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 63

Index Sub-
index

Name Object
Type

Data
Type

Attribute Default
Value

 write output 16-bit array

0 number of outputs 16-
bit

var u8 const 8

0x63004

1..8 write output var u16 rw, mapp 0
 read analog input 16-

bit
array

0 number of analog input
16-bit

var u8 const 4

0x64014

1..4 analogue input var i16 ro, mapp 0
 read analog input 32-

bit
array

0 number of analog input
32-bit

var u8 const 4

0x64024

1..4 analog input var i32 ro, mapp 0
 write analog output 16-

bit
array

0 number of analog
output 16-bit

var u8 const 4

0x64114

1..4 analog output var i16 rw, mapp 0

CANopen Software

64  SYS TEC electronic GmbH 2006 L-1020e_12

Index Sub-
index

Name Object
Type

Data
Type

Attribute Default
Value

 write analog output 32-
bit

array

0 number of analog
output 32-bit

var u8 const 4

0x64124

1..4 analog output var i32 rw, mapp 0

 analog input interrupt
upper limit integer

array

0 number of analog
inputs

var u8 const 4

0x64244

1..4 analog input var i32 rw, store 0

 analog input interrupt
lower limit integer

array

0 number of analog
inputs

var u8 const 4

0x64254

1..4 analog input var i32 rw, store 0

Table 16: Object Dictionary for standard I/O devices

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 65

2.5 Instanceability of the CANopen Layer

The CANopen stack, the CCM module and the hardware drivers are instanceable.
This means that the function contents of CANopen can be applied to multiple data
instances. This allows for support of multiple independent CANopen interfaces on
one target.

To generate instances, all global and static variables are stored in so called
instance tables. Each table entry corresponds exactly to a CANopen instance. An
entry is described by a structure. When called, the functions receive a reference to
the instance to be processed in the form of an instance pointer or an instance
handle.

The number of instances and thereby the number of entries in an instance table are
defined as constants during compilation. These constants are called
COP_MAX_INSTANCES for the CANopen and are defined in the file copcfg.h.
There is a separate define called CDRV_MAX_INSTANCES for instancing the
CAN drivers, which is also defined in the file (refer to section 2.11.1). Access to
the structure elements of an instance occurs exclusively via macros.

When defining multiple instances, if a function call occurs, a reference to the
instance to be processed is always given as a parameter in the form of an address
to an instance table (refer to section 2.5.2) or instance handle (refer to section
2.5.1). If only one instance was defined, then this parameter is left out. In the
description of the API functions, this parameter will always be listed. The
definition of the instance parameter is given with the help of macros. These
macros are deleted by the compiler's preprocessor depending on the defined
number of instances.

Example:

If only one instance is used, then the following instance parameter should be
removed.

CcmConnectToNet ();

For multiple instances the instance parameter must be given.
CcmConnectToNet (HandleInstance0);

In the file instdef.h macros are defined for the declaration and transmission of
instance parameters to functions and for access to entries in an instance tables.
Use of these macros supports function writes, which are independent from the
number of instances. As a rule, the number of instances (CANopen interfaces) is
defined by the application.

CANopen Software

66  SYS TEC electronic GmbH 2006 L-1020e_12

2.5.1 Using the Instance Handle

An instance handle is used as a reference to the current instance if a CCM layer
function is called or if one of the application's callback functions is called.

If multiple instances are used in a CANopen application, then the instance macros
have the following contents:

The macro ... corresponds to …. in the C Source

For declaration of parameters in a function's parameter list:

CCM_DECL_INSTANCE_HDL tCopInstanceHdl InstanceHandle
CCM_DECL_INSTANCE_HDL_ tCopInstanceHdl InstanceHandle,
CCM_DECL_PTR_INSTANCE_HDL tCopInstanceHdl MEM*

pInstanceHandle
CCM_DECL_PTR_INSTANCE_HDL_ tCopInstanceHdl MEM*

pInstanceHandle,

For handing over parameters to the function to be called:

CCM_INSTANCE_HDL InstanceHandle
CCM_INSTANCE_HDL_ InstanceHandle,
Table 17: Meaning of instance macros as handle

If only one instance is used then the instance macros have no content.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 67

2.5.2 Using Instance Pointers

An instance pointer is used as a reference to the current instance if a function from
a deeper layer is called (i.e. SdosProcess function call through a function from the
CCM module).

If multiple instances are used in a CANopen application, then the instance macros
have the following contents:

The macro ... corresponds to …. in the C Source

For declaration of parameters in a function's parameter list:
MCO_DECL_INSTANCE_PTR void MEM* pInstance
MCO_DECL_INSTANCE_PTR_ void MEM* pInstance,
MCO_DECL_PTR_INSTANCE_PTR void MEM* MEM* pInstancePtr
MCO_DECL_PTR_INSTANCE_PTR_ void MEM* MEM* pInstancePtr,
For handing over parameters to the module's own function:
MCO_INSTANCE_PTR pInstance
MCO_INSTANCE_PTR_ pInstance,
MCO_PTR_INSTANCE_PTR pInstancePtr
MCO_PTR_INSTANCE_PTR_ pInstancePtr,

For handing over parameters to functions not inside the module:

MCO_INSTANCE_PARAM(par) par

MCO_INSTANCE_PARAM_(par) par,

Table 18: Meaning of Instance Macros as Handle

If only one instance is used then the instance macros have no content.

CANopen Software

68  SYS TEC electronic GmbH 2006 L-1020e_12

2.6 Hints for Creating an Application

When using the CANopen layer, it is important to know which functions must be
executed in which operating state. This is crucial in order to attain the desired
functionality. Explanations of internal mechanics and cycles aid in development
of an understanding of the chosen solution or its limitations. Furthermore,
explanations are given as to which tasks must be performed by the user in order to
achieve the desired function.

To ensure the correct function of the CANopen protocol, a specific sequence must
be adhered to when executing the functions. Otherwise it is possible that data
structures won't be present or won't be initialized, whereby a function call will
result in an error or undefined behavior. 27

The sequence for execution of the various functions is coupled with the individual
NMT state machine states. This procedure is advantageous in that the state can be
described in great detail. The NMT state machine is defined by the standard CiA
DS-301. There is a good deal of secondary literature available with hints and
examples to help deepen your understanding.

This section provides a general description of the structure of an application. The
application is divided into numbered areas. The following sections containing
descriptions of individual modules make references to these areas in order to
specify the positions that must be adapted for integration of the desired module or
CANopen services.

2.6.1 Selecting the Required Modules and Configuration

When creating a CANopen device, various CANopen functions and properties are
required for object entries. When you acquire a CANopen Library, the parameter
of supported services is defined and cannot be modified. However when
integrating the CANopen Code, the selection of services is configurable and can
be adapted to application requirements.

Services are encapsulated in the modules within the CANopen stack. The
following overview shows which module is required by the respective CANopen
service. When using the source code, the required modules must be referenced
during code generation and the appropriate settings made in file CopCfg.h (refer
to section 2.11). Modules that are listed as base modules always have to be
referenced during code generation. Optional modules can be left out if the service
they support is not required.

27: When using the 'debug' version various verification tests are performed and in case of an

error the corresponding PRINTF output will be generated.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 69

Service/Function Module Category

Initializing CANopen CcmMain.c Mandatory module

Managing of PDOs Pdo.c or
PdoStc.c

optional

SDO Server SdosComm.c Mandatory module

SDO Client Sdoc.c optional

CRC calculation for SDO block transfer SdoCrc.c optional

Heartbeat producer Hbp.c optional

Heartbeat consumer Hbc.c optional

Emergency producer Emcp.c Mandatory module

Emergency consumer Emcp.c optional

Life Guarding Master Nmtm.c

Life Guarding Slave Nmts.c

Node Guarding Master Nmtm.c

Node Guarding Slave Nmts.c

The module Nmtm.c
and Nmts.c should
always be used in an
either-or fashion.

LSS Slave LssSlv.c optional

LSS Master LssMst.c optional

Creating communication objects for
message transmission

Cob.c Mandatory module

Functions for access to the object entries Obd.c Mandatory module

NMT state machine Nmt.c Mandatory module

Functions for accessing machine
specific data formats for the given
microcontroller 'Xxx'

AmiXxx.c Mandatory module

Driver for the applicable CAN
controller (Xxx) or operating system

CdrvXxx.c Mandatory module

Interface functions for adapting the
hardware-specific CAN controller
connections

CciXxx.c Mandatory module

Baud rate table containing the supported
baud rates

BdiTabXxx.c Mandatory module

Table 19: Guide for selecting the required software modules

CANopen Software

70  SYS TEC electronic GmbH 2006 L-1020e_12

Modules in the CCM layer are optional except for module CcmMain.c. The
modules support the user during configuration of the application. The user has to
decide which modules to include. An Emergency producer is always supported,
even if this service is optional according to the standard CiA DS-301. However,
practical application has shown that for diagnosis of an error in an application,
this service must be used.

The amount of supported services and protocols within a module can be further
reduced (refer to section 2.11). This is particularly interesting if very little code
and data memory is available on the target. Additional settings must be made in
the file CopCfg.h. The CANopen stack is implemented independently of any
specific CAN controller. For connection of a CAN controller, the specific driver
module CdrvXxx.c and possibly another module CciXxx.c must be included. The
module CciXxx.c is required if a stand alone controller can be connected to a
microcontroller in different ways. 28 Additional information is available in the
manual "CAN Drivers" (L-1023).

The baud rate table contains values for various baud rates for the baud rate
registers BTR0 and BTR1. These values are calculated based on the clock
frequency of the CAN controller and not the crystal or oscillator frequency. The
clock frequency of the CAN controller is usually determined by dividing or
multiplying the oscillator frequency of the CAN controller or microcontroller.

2.6.2 Sequence of a CANopen application

A CANopen application has the following cycle in principle:

o Initializing the hardware

o Creating the data structure (Object Dictionary, Tables, Structures,
Variables, Instances) and linking the configured modules configuration of
node numbers

o Initialization of services (communication parameters, creating
communication objects)

o Processing events and execution of service demands from the application.

o Closing the CANopen layer, if necessary

28: Connection to an INTEL 82C527 CAN controller can be achieved via both serial or parallel

interface.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 71

Initializing the CANopen layer

Initializing the services and
communication objects

Shutting down CANopen layer:

- Terminating services and
closing communication objects

- Processing of events in the
CANopen layer

- Processing of service requests
from the application

Shut down?
no

yes

Initializing the hardware

Figure 18: Sequence of a typical CANopen application

2.6.2.1 Initializing the Hardware

Before the CANopen layer is initialized, the hardware must be initialized by the
application. To function correctly the CANopen requires a time basis, generated
in 100µs, as well as an interface in the debug version for the output of error
messages. If an error is discovered based on a faulty configuration or
parameterization, then the CANopen layer will call standard C-function printf in
some cases. The output of the serial data stream to a terminal may need to be
adapter for the target.

The global interrupt of the microcontroller is to be released, and the CAN
controller's service routine included (which involves setting the interrupt vector
and the interrupt priority). Upon delivery, target.c files for various target
platforms are included with the CANopen Source Code. There are functions in
these files for initialization of a timer, the serial interface as well as for release of
the global and CAN controller specific interrupt.

CANopen Software

72  SYS TEC electronic GmbH 2006 L-1020e_12

Examples for the hardware initialization:
void main (void)
{
...
 // disable global interrupt
 TgtEnableGlobalInterrupt (FALSE);

 // init target (timer, interrupts, ...)
 TgtInit (); // init general
 TgtInitSerial (); // init serial interface
 TgtInitTimer (); // init system time
 TgtInitCanIsr (); // init CAN controller interrupt

 // enable global interrupt
 TgtEnableGlobalInterrupt (TRUE);

...
}

When using an operating system, the hardware is usually initialized by the
operating system. Functions may be necessary for the initialization of the
operating system.

2.6.2.2 Initializing the CANopen Layer and Creating the Data Structures

Each module in the CANopen stack or Cdrv layer (CAN driver CdrvXxx.c)
contains a function for the initialization and parameterization of the module. The
Init function must be executed for each instance. This step is required in order to
correctly process additional functions within the module.

The function CcmInitCANopen executes the basic initialization of the CANopen
layer. The Init functions of the individual modules are called within this function.
This provides the conditions necessary to link application variables (i.e. for
storing process data) with the CANopen layer.

Example for initialization of the CANopen layer:

In the following example, initialization of the CANopen layer of a CANopen
device is prepared and executed with an instance. The node contains the node
number 1, a baud rate of 1 Mbit/s is selected. The clock speed for the controller is
10 MHz for a CPU frequency of 20 MHz. When selecting the baud rate table, it is
important to be sure that the listed clock frequency refers to the clock frequency
of the CAN controller and not the oscillator frequency of the CAN controller or
the CPU. For microcontrollers with an integrated CAN controller or for stand
alone CAN controllers, the clock speed can usually be determined by dividing or
multiplying the oscillator frequency.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 73

#define NODE_ID 0x41 // Node ID is 0x41

// define index to baud rate table for 1 Mbit/sec
#define BAUDRATE kBdi1Mbaud

// define the baud rate table for 10MHz CAN control ler clock
#define CDRV_BDI_TABLE awCdrvBdiTable10

// define base address of CAN-controller
#define CAN_BASE 0xEF00

An acceptance filtration is not provided. Each CAN identifier can receive. The
parameters are stored in a tCcmInitParam structure declared as "const". The base
address of the CAN controller CAN_BASE is entered in the structure
tCdrvHwParam. A function is defined (TgtEnableCanInterrupt1) through the
application, which inhibits or releases the CAN controller interrupt. A Callback
function (AppCbNmtEvent) is defined for processing the state changes of the
NMT state machine. The function ObdInitRam , for initialization of the internal
data structures, always has to be entered.

CONST tCcmInitParam ROM CcmInitDefaultParam_g =
{
 NODE_ID, // node id
 BAUDRATE, // index to baud rate
 CDRV_BDI_TABLE, // baud rate table
 0xFFFFFFFFL, // Acceptance Mask Register
 0x00000000L, // Acceptance Code Register
 {{0}}, // CAN controller address
 TgtEnableCanInterrupt1, // function pointer to
 // enable CAN interrupt
 AppCbNmtEvent, // pointer to NMT-Callback
 // function
 ObdInitRam // init function for OD
};

In this example all entries for the structure are fixed and cannot be changed during
runtime. Therefore the structure is stored in the ROM. If the node address or
baud rate has to be changed or configured with a DIP switch during runtime, then
the structure must be stored in RAM, so that the entries (m_bInitNodeId,
m_BaudIndex etc.) can be modified by the application.

By calling the function CcmInitCANopen, the CANopen layer is initialized. The
first call of CcmInitCANopen is always performed with the parameter
kCcmFirstInstance. This causes the function to delete the internal instance table.

The Object Dictionary is created, the entries initialized with default values
(default values can be provided when the Object Dictionary is defined). However,
Object Dictionary entries are not linked to the application.

CANopen Software

74  SYS TEC electronic GmbH 2006 L-1020e_12

tCcmInitParam MEM CcmInitParam_g;

void main (void)
{
...
 // enable global interrupt
 TgtEnableGlobalInterrupt (TRUE);

 // copy default values to RAM
 CcmInitParam_g = CcmInitDefaultParam_g;

 // set address auf CAN-Controller 1 to tCdrvHwP aram
 // (tCdrvHwParam is a UNION, therefore the addr ess cannot be
 // set as const by compiler it must set by user)
 CcmInitParam_g.m_HwParam.m_McIoParam.m_pbBaseAd dr =
 TgtGetCanBase (1);

 // initialize first instance of CANopen
 Ret = CcmInitCANopen (&CcmInitParam_g,
 kCcmFirstInstance);

 if (Ret != kCopSuccessful)
 {
 goto Exit;
 }

...

Exit:
...
}

2.6.2.3 Node Number Configuration with LSS

When using the LSS service for configuring a node number, it is important to be
sure to execute the LSS state machine before switching from NMT state
INITIALIZATION to PRE-OPERATIONAL, if the node number is invalid.

If the application still has no valid node numbers following execution of
CcmInitCANopen (according to LSS specification CiA DS-305 V1.01, 0xFF is
defined as an invalid node number), then the function CcmProcessLssInitState
must be called cyclically in a loop. CANopen will wait until a valid node number
has been initialized via the LSS service before doing this. Once this has occurred,
then the function will return a value not equal to kCopLssInvalidNodeID. Now the
cyclical loop can be ended and CcmConnectToNet can be called. The NMT state
machine is then started with CcmConnectToNet. While this called is performed
the NMT Callback function within the application is called with various events.
Information on what needs to be done within these events is provided in section
2.6.2.4.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 75

Example:
...
 Ret = CcmInitCANopen (&CcmInitParam_g, CcmFirst Instance);
 if (Ret != kCopSuccessful)
 {
 goto Exit;
 }

 ...
 // run LSS init state process until NodeId is v alid
 do
 {
 Ret = CcmProcessLssInitState ();

 } while (Ret == kCopLsssInvalidNodeId);
 ...

 Ret = CcmConnectToNet ();
 if (Ret != kCopSuccessful)
 {
 goto Exit;
 }

If the node number is modified again during the cyclical execution of
CcmProcess, then a re-initialization of the CANopen layer will be performed
automatically (in the CCM module). When this occurs, the events
kNmtEvResetNode, kNmtEvRestCommunication and
kNmtEvEnterPreOperational will be registered again in the NMT Callback
function of the application.

CANopen Software

76  SYS TEC electronic GmbH 2006 L-1020e_12

2.6.2.4 Initializing Services and Communication Objects, Service
Execution

In the previous step, the basic data structures were created and initialized. The
CANopen device contains a valid node number. The step that follows now links
the application variables to the entries in the Object Dictionary and initializes the
services and communication objects for the data transfer. Thus the functions to be
executed are assigned the states within the NMT state machine.

After the function CcmInitCANopen has been executed, the CANopen device
will be in the NMT state machine's INITIALIZING state.

Initialisation

Pre-Operational

Operational

Stopped

Reset Communication

Reset Appliction

(1)

(2)

(3) (4)
(5)

(6)

(7)

(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Initialising

Figure 19: NMT state machine according to CiA DS-301 V4.02

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 77

 Event Command

(1) Power-on or hardware reset kNmtEvEnterInitialising

(2) automatic change into PRE-
OPERATIONAL state after
completion of INITIALISATION

kNmtEvEnterPreOperational

(3), (6) NMT command:

Start_Remote_Node

kNmtEvEnterOperational

(4), (7) NMT command:

Enter_Pre_Operational_Node

(5), (8) NMT command:

Stop_Remote_Node

kNmtEvEnterStopped

(9), (10),
(11)

NMT command:

Reset_Node

kNmtEvResetNode

(12),
(13), (14)

NMT command:

Reset_Communication

kNmtEvPreResetCommunication

kNmtEvResetCommunication

kNmtEvPostResetCommunication

(15) automatic change into RESET-
APPLICATION state after
completion of INITIALIZING

kNmtEvResetNode

(16) automatic change into RESET-
COMMUNICATION state after
RESET-APPLICATION finished

kNmtEvPreResetCommunication

kNmtEvResetCommunication

kNmtEvPostResetCommunication

Table 20: NMT state machine explanation (List of events and commands)

According to the standard CiA DS-301 the following services are to be supported
in the various NMT states:

CANopen Software

78  SYS TEC electronic GmbH 2006 L-1020e_12

Communi-
cation
object

INITIALISING PRE-
OPERATIONAL

OPERATIONAL STOPPED

PDO X

SDO X X

SYNC X X

Time Stamp X X

Emergency X X

Boot-Up X

NMT X X X

Table 21: Supported communication objects in various NMT states [4]

The function CcmConnectToNet starts the execution of the State machine with
the state INITIALIZING. After a state has been closed, the state machine will shift
to the next state on its own until reaching the state PRE-OPERATIONAL. The
function CcmConnectToNet will then return. During execution of the individual
states respective events, the modules of the CANopen stack will be called
repeatedly over the XxxNmtEvent function. Likewise a call will be performed for
the application's NMT Callback function AppCbNmtEvent, if a function has
been parameterized (entry m_fpNmtEventCallback of the structure
tCcmInitParam). When an NMT Callback function is called, the NMT event is
given as a parameter (event will be handed over as parameter, refer to Table 20).

The function AppCbNmtEvent is called as the last function within the execution
sequence of an NMT state's XxxNmtEvent functions, allowing previously set
standard values to be modified as needed for an application.

In the following examples the function AppCbNmtEvent is called as the
application's NMT Callback function. The examples are based on the condition
that only one instance was configured. When multiple instances are used then the
instance parameter must be completed.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 79

State INITIALIZING:

This state is only executed one time following a power-on or reset. In this state the
modules' Init functions (such as CcmInitLgs , must be executed. In this state all
application variables have to be linked to the variable entries of the Object
Dictionary. After this is finished, the state machine automatically goes into the
RESET APPLICATION event.

Example:
tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent _p)
{
tCopKernel Ret = kCopSuccessful;

 // which event was called?
 switch (NmtEvent_p)
 {
 // after power-on link all variables with O D
 case kNmtEvEnterInitialising:

 // linking of variables for CANopen wit h OD
 Ret = CcmDefineVarTab (aVarTab_g,
 sizeof (aVarTab_g) / sizeof (tVarParam));

 break ;
 ...

State RESET APPLICATION:

In this event all manufacturer specific objects (from 0x2000 to 0x5FFF) and all
device specific objects (starting at 0x6000 up to 0x9FFF) have been reset to their
power-on values. Power-on value refers to the default value from the Object
Dictionary or the last value saved in the non-volatile memory. The application can
change the values of process variables at a later time.

Example:

tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEven t_p)
{
tCopKernel Ret = kCopSuccessful;

 // which event is called?
 switch (NmtEvent_p)
 {
 case kNmtEvEnterInitialising:
 ...
 break ;

 case kNmtEvResetNode:

 // reset process vars
 wDigiOut = 0;
 ...
 break ;

CANopen Software

80  SYS TEC electronic GmbH 2006 L-1020e_12

State RESET COMMUNICATION:

Here all communication parameters (starting at 0x1000 to 0x1FFF) are reset to
their power-on29 values. Power-on value refers to the default value from the
Object Dictionary or the last value saved in the non-volatile memory.

The communication objects for all modules in the CANopen stack are created.
The application can now redefine all PDOs. With this, all settings are overwritten
by the default values from the OD or the values stored in the non-volatile
memory. The state machine changes automatically to PRE-OPERATIONAL state
after completion. A CANopen slave signals this state transition by sending a
BOOTUP message.

29: The power-on values are the last values stored in the object 0x1010 (Save Parameters), in as

far as they are not reset to their default values with the object 0x1011 (Restore Parameters). It
is up to the user to arrange the upload of Object Dictionary entries into a non-volatile
memory. The user is supported thereby by module CcmStore.c.

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 81

Example:
tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent _p)
{
tCopKernel Ret = kCopSuccessful;

 // which event is called?
 switch (NmtEvent_p)
 {
 // reset all communication objects (0x1000- 0x1FFF)
 case kNmtEvResetCommunication:
 Ret = CcmDefinePdoTab (
 (tPdoParam GENERIC*) &aPdoTab_g[0],
 sizeof (aPdoTab_g) / sizeof (tPdoParam));
 break ;

Dissenting from the NMT state machine in

Initialisation

Pre-Operational

Operational

Stopped

Reset Communication

Reset Appliction

(1)

(2)

(3) (4)
(5)

(6)

(7)

(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Initialising

Figure 19, two additional states were implemented within this state.

CANopen Software

82  SYS TEC electronic GmbH 2006 L-1020e_12

kNmtEvPreResetCommunication:

- Shuting down active services
- Erasing communication objects

kNmtEvResetCommunication:

- Initializing communication objects

kNmtEvPostResetCommunication:

- Transmitting the BOOTUP message

Figure 20: Additional NMT states

In the state PRE-RESET-COMMUNICATION all active services are ended and the
communication object is deleted. In the state POST-RESET-COMMUNICATION
the transfer of the BOOTUP message is initiated, whereby a CANopen slave
signals that the initialization is complete. The state machine changes to PRE-
OPERATIONAL state.

State PRE-OPERATIONAL:

In this state communication per SDO is possible. Life Guarding, Node Guarding
or Heartbeat is executed if these services were configured by the application. With
the help of SDOs, communication parameters and mapping parameters can be
modified for PDOs over the CAN bus. The CANopen device switches to state
OPERATIONAL after receipt of the NMT Start_Remote_Node from a NMT
Master 30 or after calling the function CcmBootNetwork() respectively
CcmSendNmtCommand (0x00, kNmtCommStartRemoteNode).

After the execution of this event the function CcmConnectToNet is ended. State
changes are now initiated upon receipt of NMT commands. The processing occurs
within the function CcmProcess.

The function CcmProcess must be called in a cyclical loop. The more often it is
called, the more stable the CANopen layer's reactions will be to time events.

30 : For network applications where no NMT Master is present changing to OPERATIONAL state

can be forced by calling the function NMTExecCommand(kNmtCommEnterOperational).

User Layer
__

 SYS TEC electronic GmbH 2006 L-1020e_12 83

Within the function CcmProcess, CAN messages are evaluated first and assigned
to the corresponding internal CANopen modules. If an event occurs that is
important for the application, then a Callback function will be called. Most of
these Callback functions are located in the CCM module or are components of the
application and can therefore be adapted by the user. Furthermore, the function
CcmProcess tests a few time cycles, for which a CAN message may have to be
sent under certain circumstances. For example, PDOs may be sent following
completion of the Event Timer. Likewise an SDO abort is sent if the SDO server
expects a message from the SDO client during a segmented transfer but does not
receive one.

State OPERATIONAL:

The transmission from PRE-OPERATIONAL to OPERATIONAL state generates a
transfer of all asynchronous TPDOs. In this state PDOs are transferred if an event
occurs (such as EventTimer expired, SYNC message received, modification of
process variables). If PDOs are received, then their data is put into the OD and the
application will be notified by calling the corresponding callback function
containing applicable parameters.

State STOPPED:

In this state the execution of all services is stopped with the exception of NMT
services (this also includes Node Guarding and Heartbeat).

2.6.2.5 Shutting Down a CANopen Application

The CANopen application is closed by executing the function
CcmShutDownCANopen. This function calls the function XxxDeleteInstance
for each module that is configured in the CANopen stack. The modules finish
their services and delete the communication objects. The data structures of the
CANopen layer are invalid after the function CcmShutDownCANopen has been
executed.

This document has been truncated!

If you wish to receive a complete copy of this document
please contact us via e-mail:

support@systec-electronic.com

CANopen Software

412  SYS TEC electronic GmbH 2006 L-1020e_12

4 Notes on CANopen Certification

For CANopen certification with CiA, the following should be noted:

• Only a device can be certified and not software

The CANopen stack was certified with the CANopen-Chip from SYS TEC
electronic GmbH.
Certificate No.: CiA200002-301V30/11-013

• Thus we can demonstrate that certification with our CANopen stack is
possible.

However, certification also depends on a number of factors, that we cannot
influence directly.

Therefore please note the following:

• The entries in the OD must match those in the *.EDS file. This effects above

all the device name (Index 0x1008, the hardware and software version (Index
0x1009 or 0x100A) etc.

• The number of PDOs must match the PDOs actually present in the OD
• All indices that are present in the software must also be entered in the EDS

file. There can be no hidden entries.
• The entries in Index 0x100C and 0x100D (Life Guarding) must have a default

setting of zero.
• The Index 0x1003, Sub-index 0 can only be written to with a 0 and then the

error field has to be erased. Writing a number that is greater than 0 will result
in an error.

• The Mapping Parameter Sub-indexes 0 (e.g. 0x1600,0, 0x1601,0, 0x1A00, 0
etc.) can be written with values up to 64 max. If the maximum value is exceed
an error message will result. Since our CANopen software supports
bytemapping in its default setting, all values >8 are rejected.

• It must always be possible to answer RTR-queries sent to the node (regardless
of TxType).

If the criteria in aforementioned points are met, then certification should be easy.

Note:
We verify our software ourselves with the current version of the CiA
Conformance Test Tool. We can also perform pretests of customer devices in
house.

 CANopen Certification

 SYS TEC electronic GmbH 2006 L-1020e_12 413

CANopen Software

414  SYS TEC electronic GmbH 2006 L-1020e_12

5 Glossary

User Layer:
CiA DS-301: Definition of communication profile and application

layer

Framework:
CiA DSP-302: Framework for programmable CANopen devices
CiA DSP-304: Framework for safety relevant communication

Communication Profile Specification of transmission protocols,

communication objects, data objects

Device Profile Specification of device-specific services and

properties

CiA DS-401 CiA Draft Standard 401

Device profile for generic I/O modules

Object Dictionary (OD): The Object Dictionary (OD) is the main data

structure of a CANopen devices for storage of all
device data. It serves as a binding element between
the application and the communication layer. Any
OD entry is address via an index and a sub-index.

Communication Object: Object for transmitting data between CANopen

devices.

TPDO Communication object for sending process data

(Transmit Process Data Object)

RPDO Communication object for receiving process data

(Receive Process Data Object)

Tx-Type PDO transmission type. This always corresponds to

sub-index 2 of the PDO communication parameter
(object index 0x1400 to 0x15FF and 0x1800 to
0x19FF).

MPDO Multiplexed PDO – Enables the transmission of

process data in an SDO-like manner. It is possible to
transmit data to one or multiple devices

 Index

 SYS TEC electronic GmbH 2006 L-1020e_12 415

simultanously without having a PDO for each single
object.

DAM Destination Address Mode – MPDO mode where the
producer adresses the destination object in the
consumer’s OD.

SAM Source Address Mode – MPDO mode where the
producer gives the address of the source object in the
local OD. The producer has a Scanner-list containing
all the objects to be sent. The consumers have a
corresponding dispatcher list. This list connects each
producer’s source object to a destination object in
the consumer’s OD.

CANopen Software

418  SYS TEC electronic GmbH 2006 L-1020e_12

References

[1] „CANopen User Manual“, Software Manual, SYS TEC electronic GmbH,
Dokument Nr. L-1020, dieses Handbuch

[2] „CAN-Treiber“, Software Manual, SYS TEC electronic GmbH, 2004,

Dokument Nr. L-1023

[3] „CANopen Objektverzeichnis“, Software Manual, SYS TEC electronic

GmbH, 2004, Dokument Nr. L-1024

[4] „CANopen - Application Layer and Communication Profile“, CiA1 Draft

Standard 301, Version V4.02, 13 February 2002

[5] „CANopen - Framework for CANopen Managers and Programmable

CANopen Devices“, CiA1 Draft Standard Proposal 302, V3.2, 04. 12. 2004

[6] „CANopen - Interface and Device Profile for IEC 61131-3 Programmable

Devices“, CiA1 Draft Standard 405, V2.0, 21. 05. 2002

[7] „CANopen - Device Profile for Generic I/O Modules“, CiA1 Draft

Standard 401, V2.1, 17. May 2002

1 CiA CAN in Automation e.V.

 Index

 SYS TEC electronic GmbH 2006 L-1020e_12 419

 Index

 SYS TEC electronic GmbH 2006 L-1020e_12 421

INDEX

Abort Codes 344
AMI... 408
AMI Interface.............................. 408
Application-specific Layer............ 49
Big Endian................................... 408
Bit Rate Table 404
BOOTUP....................................... 35
Callback function

CcmCbEmccEvent150
CcmCbEmcpEvent156
CcmCbError100
CcmCbHbcEvent...........................161
CcmCbLgsEvent127
CcmCbLssmEvent.........................199
CcmCbLsssEvent104, 202
CcmCbNmtEvent99
CcmCbNmtmEvent142
CcmCbRestore132
CcmCbStore130
CcmCbStoreLoadObject134
CcmCbSyncReceived....................147

Callback Function 281
CAN Bit Rate 404
CAN Driver................................. 403

Selection..402
CAN ERROR LED 182, 185
CAN RUN LED.................. 181, 184
CANopen DLL.................... 383, 384
CANopen Stack............................. 47
CANopen Stack Configuration ... 348
CANopen Stack Functions.......... 203
Ccixxx.c 402
CCM.. 49
CCM_CONVERT_LSSCMD_TO_L

SSFLAG................................... 195
CCM_DR303_USE_BICOLOR_LE

D... 187
CCM_MODULE_DR303_3 182
CCM_MODULE_INTEGRATION

... 182, 353
CCM_USE_STORE_RESTORE 354
Ccm303 181
CcmBoot 173
CcmDfPdo................................... 119

CcmEmcc.....................................147
CcmEmcp.....................................151
CcmFloat......................................174
CcmHbc158
CcmHbp162
CcmLgs..125
CcmLss ..188
CcmMain..84
CcmMPdo334
CcmNmtm....................................137
CcmObj ..122
CcmSdoc......................................107
CcmSnPdo....................................144
CcmStore......................................128
CcmStPdo175
CcmSync......................................144
CDRV ..48
CDRV_CAN_SPEC356
CDRV_IDINFO_ALGO..............357
CDRV_IDINFO_ENTRIES358
CDRV_MAX_INSTANCES.......354
CDRV_MAX_RX_BUFF_ENTRIE

S_HIGH....................................371
CDRV_MAX_RX_BUFF_ENTRIE

S_LOW.....................................371
CDRV_MAX_TX_BUFF_ENTRIE

S_HIGH....................................371
CDRV_MAX_TX_BUFF_ENTRIE

S_LOW.....................................371
CDRV_TIMESTAMP358
CDRV_USE_BASIC_CAN.........355
CDRV_USE_HIGHBUFF...........356
CDRV_USE_IDVALID356
CDRV_USED_CAN_CONTROLLE

R..355
cdrvtgt.h403
Cdrvxxx.h.....................................402
Certification412
CiA303-3......................................181
COB Callback Function.......288, 294
COB Module................................288

CANopen Software

422  SYS TEC electronic GmbH 2006 L-1020e_12

COB_MAX_RX_COB_ENTRIES
..288, 371

COB_MAX_TX_COB_ENTRIES
..288, 371

COB_MORE_THAN_128_ENTRIE
S..358

COB_MORE_THAN_256_ENTRIE
S..358

COB_SEARCHALGO................359
Communication Objects288
Communication Parameters.202, 205
Communication Profile40
Constant

CCM_LSSFLAGS_ALL...............195
CCM_LSSFLAGS_SLAVE_ADDRE

SS...195
EMCP_EVENT_ERROR_DELETEA

LL...157
EMCP_EVENT_ERROR_LOG....157
kLssmCmdInquireNodeId195
kLssmCmdInquireProductCode195
kLssmCmdInquireRevisionNr.......195
kLssmCmdInquireSerialNr............195
kLssmCmdInquireVendorId..........195
kLssmEvActivateBitTiming..........200
kLssmEvActivateBusContact200
kLssmEvDeactivateBusContact200
kLssmEvModeSelective200
kLssmEvResult..............................200
kLssModeConfiguration................190
kLssModeOperation190
kLssModeSelective........................190

COP_FREE..................................405
COP_MALLOC405
COP_MAX_INSTANCES..........348
COP_USE_CDRV_FUNCTION_PO

INTER349
COP_USE_OPERATION_SYSTEM

..352
COP_USE_SMALL_TIME352
copcfg.h403
CRC Calculation..........................230
DAM....................................367, 415
data array178, 266
Data Structures54, 204
Development Environment..........372
Directory Structure52
DR303-3181

Dynamic Memory Management.. 405
EMCC Callback Function147, 148,

150, 307, 310
EMCC_MAX_CONSUMER...... 371
EMCP_USE_EVENT_CALLBACK

.. 363
EMCP_USE_PREDEF_ERROR_FI

ELD.. 363
Emergency..................................... 30
Emergency Consumer Module.... 307
Emergency Error Codes 346
Emergency Producer Module...... 313
Error Callback Function 100
Error Handling............................... 42
Event Timer................................... 83
Expedited Download 228
Expedited Upload........................ 230
free...405
Function

Ccm303InitIndicators.................... 182
Ccm303ProcessIndicators 183
Ccm303SetErrorState.................... 185
Ccm303SetRunState 183
CcmBootNetwork 173
CcmClearPreDefinedErrorField.... 153
CcmConfigEmcp........................... 152
CcmConfigHbp 162
CcmConfigLgs 126
CcmConfigSyncConsumer............ 145
CcmConigSyncProducer............... 146
CcmConnectToNet.......................... 92
CcmConvertFloat 174
CcmDefineNmtSlaveTab 138
CcmDefinePdoTab........................ 119
CcmDefineStaticPdoTab............... 177
CcmDefineVarTab.......................... 93
CcmEmccDefineProducerTab....... 148
CcmEnterCriticalSectionPdoProcess

...396
CcmHbcDefineProducerTab......... 159
CcmInitCANopen 86
CcmInitEmcc 148
CcmInitHbc................................... 158
CcmInitLgs.................................... 125
CcmInitNmtm 137
CcmInitStore 128
CcmInitSyncConsumer 144

 Index

 SYS TEC electronic GmbH 2006 L-1020e_12 423

CcmLeaveCriticalSectionPdoProcess
...397

CcmLockCanopenThreads380
CcmLockedCopyData381
CcmLssmConfigureSlave..............191
CcmLssmIdentifySlave197
CcmLssmInquireIdentity...............194
CcmLssmSwitchMode189
CcmPdoSendMPDO......................334
CcmProcess98
CcmProcessLssInitState97
CcmReadObject124
CcmSdocAbort118
CcmSdocDefineClientTab.............107
CcmSdocGetState..........................115
CcmSdocStartTransfer111
CcmSendEmergency154
CcmSendNmtCommand................139
CcmSendThreadEvent...........382, 394
CcmShutDownCANopen91
CcmSignalCheckVar.....................144
CcmSignalStaticPdo......................180
CcmStoreCheckArchivState..........129
CcmTriggerNodeGuard.................141
CcmUnlockCanopenThreads.........381
CcmWriteObject............................123
CobCheck......................................292
CobDefine289
CobProcessRecvQueue294
CobSend ..293
CobUndefine291
EmccAddInstance..........................307
EmccAddProducerNode................311
EmccDeleteInstance308, 315
EmccDeleteProducerNode312
EmccInit ..307
EmccNmtEvent308
EmccSetEventCallback310
EmcpAddInstance314
EmcpInit ..313
EmcpNmtEvent316
EmcpSendEmergency317
HbAddInstance..............................326
HbcAddInstance320
HbcDeleteInstance.........................321
HbcInit...319
HbcNmtEvent................................322
HbcSetEventCallback....................324
HbpDeleteInstance327
HbpInit ..325

HbpProcess 329
NmtExecCommand....................... 295
NmtmAddSlaveNode.................... 300
NmtmConfigLgm.......................... 302
NmtmDeleteSlaveNode 301
NmtmGetSlaveInfo....................... 304
NmtmProcess................................ 306
NmtmSendCommand.................... 305
NmtmTriggerNodeGuard.............. 303
NmtsProcess.................................. 298
NmtsSendBootup.......................... 297
NmtsSetLgCallback...................... 299
ObdAccessOdPart......................... 274
ObdDefineVar............................... 277
ObdGetEntry................................. 269
ObdGetNodeId.............................. 279
ObdGetNodeState 278
ObdReadEntry 272
ObdRegisterUserOd...................... 280
ObdWriteEntry.............................. 270
PdoAddInstance............................ 254
PdoDefineCallback 257
PdoDeleteInstance 255
PdoForceAsynPdo 265
PdoInit... 253
PdoNmtEvent................................ 255
PdoProcessAsync.......................... 261
PdoProcessCheckVar.................... 260
PdoProcessSync............................ 262
PdoSend .. 258
PdoSendMPDO............................. 332
PdoSendSync 264
PdoSetSyncCallback..................... 264
PdoSignalDynPdo......................... 259
PdoSignalStaticPdo....................... 267
PdoSignalVar 260
PdoStaticDefineVarField 267
SdocAbort 246
SdocAddInstance 233
SdocDefineClient.......................... 236
SdocDeleteInstance....................... 234
SdocGetState................................. 244
SdocInit... 231
SdocInitTransfer 239
SdocNmtEvent 234
SdocProcess 245
SdocUndefineClient...................... 238
SdosAbort 225
SdosAddInstance 217
SdosDefineServer 220

CANopen Software

424  SYS TEC electronic GmbH 2006 L-1020e_12

SdosDeleteInstance........................218
SdosInit..215
SdosNmtEvent218
SdosProcess224
SdosUndefineServer223
TgtCanIsrxxx.................................407
TgtCavCheckValid172
TgtCavClose168
TgtCavCreate.................................164
TgtCavDelete.................................165
TgtCavGetAttrib............................171
TgtCavInit......................................163
TgtCavOpen167
TgtCavRestore...............................170
TgtCavShutDown..........................163
TgtCavStore...................................169
TgtEnableCanInterrupt407
TgtEnableGlobalInterrupt..............406
TgtGetCanBase..............................407
TgtGetTickCount...................406, 407
TgtInit ..406
TgtInitCanIsr406
TgtInitSerial...................................406
TgtInitTimer406
TgtMemCpy405, 407
TgtMemSet405, 407
TgtTimerIsr....................................406

GLOBAL.H399
Hardware-Specific Layer...............48
HBC Callback Function158, 161,

318, 324
HbpNmtEvent..............................328
Heartbeat..................................36, 38
Heartbeat Consumer39
Heartbeat Consumer Module.......318
Heartbeat Producer38
Heartbeat Producer Module.........325
Indicator Specification.................181
Inhibit Time27
Initialization...................................35
INITIALIZATION74, 92
INITIALIZING..............................76
Instance Handle66
Instance Pointers............................67
Intel Format408
kCobTypForceRmtRecv..............291
kCobTypForceSend.....................291
kCobTypRecv..............................290

kCobTypRmtRecv....................... 290
kCobTypRmtSend....................... 290
kCobTypSend.............................. 290
Kernel Driver............................... 383
Kernel Mode Driver 376
kLssmEvIdentifyAnySlave 200
kLssmEvInquireData................... 200
kLsssEvActivateBitTiming 105
kLsssEvConfigureBitTiming 105
kLsssEvConfigureNodeId 105
kLsssEvDeactivateBusContact.... 105
kLsssEvEnterConfiguration 105
kLsssEvEnterOperation............... 105
kLsssEvPreResetNode................. 105
kLsssEvSaveConfiguration 105
kNmtCommEnterOperational 140,

296
kNmtCommEnterPreOperational140,

296
kNmtCommEnterStopped ... 140, 296
kNmtCommInitialize................... 296
kNmtCommResetCommunication

.. 140, 296
kNmtCommResetNode 140, 296
kNmtCommStartRemoteNode ... 140,

296
kNmtCommStopRemoteNode ... 140,

296
kNmtErrCtrlEvBootupReceived . 143
kNmtErrCtrlEvHbcConnected 161
kNmtErrCtrlEvHbcConnectionLost

.. 161
kNmtErrCtrlEvHbcNodeStateChang

ed.. 161
kNmtErrCtrlEvLgConnected....... 127
kNmtErrCtrlEvLgLostConnection

.. 127
kNmtErrCtrlEvLgMsgLost 127
kNmtErrCtrlEvLgNoAnswer 143
kNmtErrCtrlEvLgNodeStateChange

d.. 143
kNmtErrCtrlEvLgSuspended 143
kNmtErrCtrlEvLgToggleError.... 143
kNodeStateInitialisation 278
kNodeStateOperational 278
kNodeStatePreOperational 278

 Index

 SYS TEC electronic GmbH 2006 L-1020e_12 425

kNodeStateStopped..................... 278
kObdAccVar 277
kObdDirInit 276
kObdDirLoad 276
kObdDirRestore 276
kObdDirStore 276
kObdEvAbortSdo........................ 284
kObdEvCheckExist 283
kObdEvInitWrite......................... 283
kObdEvPostRead 283
kObdEvPostWrite 283
kObdEvPreRead.......................... 283
kObdEvPreWrite......................... 283
kObdEvWrStringDomain............ 284
kObdPartAll 275
kObdPartDev............................... 275
kObdPartGen............................... 275
kObdPartMan 275
kObdPartUsr................................ 275
Konstante

kLssmEvTimeout200
Layer Setting Service 32
Lgs Callback Function 125, 127, 298
Life Guarding.......................... 36, 37
Linux ... 376
Little Endian................................ 408
LSS..32
LSS address......................... 190, 194
LSS Callback Function 104
LSS master 32, 188
LSS mode...................................... 32
LSS slave..................................... 188
LSS slaves 32
LSS_INVALID_NODEID.......... 279
LSSM_CONFIRM_TIMEOUT .. 370
LSSM_PROCESS_DELAY_TIME

... 370
malloc.. 405
Master callback function............. 137
Master Callback Function137, 141,

142, 301, 306
Motorola Format 408
MPDO 331, 414
Network Management................... 35
NMT

OPERATIONAL...........................278

PRE-OPERATIONAL.................. 278
STOPPED..................................... 278

NMT callback function202
NMT Callback Function74, 78, 93,

99, 110, 202, 295
NMT Command...........................295
NMT Commands300
NMT Error101
NMT Master Module300
NMT Module295
NMT Slave Module297
NMT State Machine.......35, 101, 295
NMTM_MAX_SLAVE_ENTRIES

..371
NMTS_USE_LIFE GUARDING 363
Node Guarding...............................36
Node Number...............................279
Node State....................................278
OBD Module................................268
OBD_CHECK_FLOAT_VALID 360
OBD_CHECK_OBJECT_RANGE

..269
OBD_CHECK_OBJECT_RANGE

..360
OBD_OBJ_SIZE_BIG.................269
OBD_OBJ_SIZE_MIDDLE........269
OBD_OBJ_SIZE_SMALL..........269
OBD_SUPPORTED_OBJ_SIZE.269
OBD_SUPPORTED_OBJ_SIZE.359
OBD_USE_DYNAMIC_OD.......360
OBD_USE_STRING_DOMAIN_IN

_RAM360
OBD_USER_OC280
Object Callback Function122, 130,

132, 205, 214, 227, 271, 273, 281
Object Dictionary.....................41, 58
Object Dictionary Configuration .371
OD for I/O Devices........................59
Operating Systems372
OPERATIONAL......................36, 82
PDO................................17, 247, 353

Event Time.................................... 365
PDO Callback Function121, 250,

258
PDO Configuration80, 120
PDO Error102

CANopen Software

426  SYS TEC electronic GmbH 2006 L-1020e_12

PDO Event Time250
PDO Inhibit Time250
PDO Initialization........................253
PDO Linking18, 82, 120
PDO Mapping..................18, 82, 120
PDO Module................................247
PDO Receive Notification...........250
PDO Remote Frame366
PDO Send Notification................250
PDO Synchronization..145, 147, 263
PDO Transfer.......250, 260, 261, 262
PDO Transmission.................18, 258
PDO_DISABLE_FORCE_PDO .367
PDO_GRANULARITY365
PDO_PROCESS_TIME_CONTROL

..364
PDO_USE_DUMMY_MAPPING

..367
PDO_USE_ERROR_CALLBACK

..366
PDO_USE_EVENT_TIMER......365
PDO_USE_MPDO_DAM_CONSU

MER ...367
PDO_USE_MPDO_DAM_PRODU

CER..367
PDO_USE_MPDO_SAM_CONSU

MER ...367
PDO_USE_MPDO_SAM_PRODUC

ER...367
PDO_USE_REMOTE_PDOS.....366
PDO_USE_STATIC_MAPPING367
PDO_USE_SYNC_PDOS...........365
PDO_USE_SYNC_PRODUCER366
PDOSTC................................47, 247
PRE_OPERATIONAL............90, 92
Pre-Defined Connection-Set..........35
PRE-OPERATIONAL35, 74, 78, 80,

101
Process Data Objects17
Process Variables.........................202
PxROS ...372
Reset Communication121
Reset Node...................................121
Reset_Communication36
Return Codes336
SAM367, 415

SDO... 28
SDO Abort Codes........................ 344
SDO Block Transfer.................... 230
SDO Block Transfer Protocol 213,

230
SDO Callback Function111, 116,

119, 231, 239, 241, 245, 247
SDO Client 225
SDO Client Creation 227
SDO Client Table 226
SDO Download Protocol............. 209
SDO Transfer 207
SDO Upload Protocol.................. 212
SDO_BLOCKSIZE_DOWNLOAD

.. 368
SDO_BLOCKSIZE_UPLOAD... 368
SDO_BLOCKTRANSFER......... 368
SDO_CALCULATE_CRC 369
SDO_CALCUULATE_CRC 230
SDO_MAX_CLIENT_IN_OBD. 233
SDO_SEGMENTTRANSFER... 228,

229, 369
SDOC Data Structures................. 226
SDOC Module............................. 225
SDOC_DEFAULT_TIMEOUT .. 370
SDOS... 203
SDOS_DEFAULT_TIMEOUT .. 369
Segmented Download.................. 228
Segmented Upload 229
Sending PDOs 247
Service Data Objects 28
Software Structure......................... 45
static PDO mapping..... 247, 265, 367
static PDO Mapping 175
Static PDO mapping...................... 47
STOPPED...................................... 36
Store Callback Function 128, 134
Structure

tCcmInitParam 87, 389
tCobCdrvFct.................................. 351
tCobParam..................................... 290
tEmcParam.................................... 150
tHbcProdParam 159
tLinuxParam.................................. 378
tLssAddress................................... 190
tLssCbParam................................. 104
tLssmBitTiming 193

 Index

 SYS TEC electronic GmbH 2006 L-1020e_12 427

tLssmIdentifyParam198
tLssmResult...................................201
tMPdoParam..................................333
tNmtmSlaveInfo305
tNmtmSlaveParam303
tObdCbParam................................281
tObdCbStoreParam........................134
tObdVStringDomain284
tPdoError102
tPdoParam120
tPdoStaticParam177
tSdocCbFinishParam.....................242
tSdocInitParam..............................232
tSdocParam............................108, 237
tSdocTransferParam..............112, 240
tSdosInitParam216
tSdosParam....................................221
tVarParam..94
tWindowsParam390

SYNC Callback Function144, 145,
147, 248, 265

Synchronization Objects 30

target.c..406
target.h ...405
TARGET_HARDWARE349, 402,

405
Telegram Table43
TGT_CONFIG_CANOPEN_LEDS

..186
TGT_SWITCH_ERROR_LED ..182,

187
TGT_SWITCH_RUN_LED186
Time Stamp Object30
Transmission Protocols..................41
tSdocState.....................................116
Typ

tVxDType 390
User Layer......................................45
Variable Callback Function54, 95,

250
Windows383

CANopen Software

428  SYS TEC electronic GmbH 2006 L-1020e_12

 Suggestions for Improvement

 SYS TEC electronic GmbH 2005 L-1020e_12

Document: CANopen Software Manual
Document number: L-1020e_12, May 2006

How would you improve this manual?

Did you find any mistakes in this manual? page

Submitted by:
Customer number:

Name:

Company:

Address:

Return to:
 SYS TEC electronic GmbH
 August-Bebel-Str. 29
 D-07973 Greiz, Germany
 Fax : +49 (0) 3661 62 79 99

Published by

 SYS TEC electronic GmbH 2005 Ordering No. L-1020e_12
 Printed in Germany

