5YS TEC

ELECTRONIC

CANopen User Manual

Software Manual

Edition May 2006

system house for distributed automation

CANopen Software

In this manual are descriptions for copyrighteddoiis which are not explicitly
indicated as such. The absence of the trademankd®&apyright © symbols does
not infer that a product is not protected. Additityy, registered patents and
trademarks are similarly not expressly indicatethia manual

The information in this document has been careftiigcked and is believed to be
entirely reliable. However, SYS TEC electronic Gmassumes no responsibility
for any inaccuracies. SYS TEC electronic GmbH reitlives any guarantee nor
accepts any liability whatsoever for consequertsahages resulting from the use
of this manual or its associated product. SYS TECtenic GmbH reserves the
right to alter the information contained herein heit prior notification and
accepts no responsibility for any damages whicthimgsult.

Additionally, SYS TEC electronic GmbH offers no gamtee nor accepts any
liability for damages arising from the improper geaor improper installation of
the hardware or software. SYS TEC electronic Gmbithéer reserves the right to
alter the layout and/or design of the hardware authprior notification and
accepts no liability for doing so.

© Copyright 2006 SYS TEC electronic GmbH, D-07973 ei@&iThueringen.
Rights - including those of translation, reprintpdédcast, photomechanical or
similar reproduction and storage or processingomputer systems, in whole or
in part - are reserved. No reproduction may occithomt the express written
consent from SYS TEC electronic GmbH.

EUROPE NORTH AMERICA
) SYS TEC electronic GmbH PHYTEC America LLC
Address: August-Bebel-Str. 29 203 Parfitt Way SW, Suite G100
D-07973 Greiz Bainbridge Island, WA 98110
GERMANY USA

. +49-3661-6279-0 1 (800) 278-9913
Ordering sales@systec-electronic.com info@phytec.com
Information:

. +49-3661-6279-0 1 (800) 278-9913
Technical support@systec-electronic.com support@phytec.com
Support:

+49-3661-6279-99 1 (206) 780-9135
Fax:
Web Site: http://www.systec-electronic.com http://www.phytam

12" Edition May 2006

© SYS TEC electronic GmbH 2006

L-1020e_12

Contents

Table of Contents

Preface ... 11
1 CANopen FundamentalScoouveiiiiiiiiii e, 13
1.1 What iS CANOPEN?coiieiiiiiiiee et emmmr e e e e e e 14
1.2 Communication ODJECES.........ccovviiiiiiiiiii e 17
1.2.1 PDO — Process Data ODbjecCtSccovicceeeeeriiiiiieeee, 17
1.2.2 SDO — Service Data ODbjectsciiiiiieieiiiiiiiiieeeee, 28
1.2.1 Synchronization ODJecCtS........cccoovviiiiiiiiiiiie e 30
1.2.2 Time Stamp ODJECt........uuviiiiiiieiieeecc e, 30
1.2.3 EMEIGENCY ..uuniiiiiiiiiiie ettt e 30
1.2.4 Layer Setting Service (LSS).......cuuviiiiiieeiieeneeieeeeeiiiinn, 32
1.3 Network Management.......ccoeeeeiiieiiiiiiiiee e 35
1.4 CANopen Communication Profileccoooviemeiiiiiiiiiiiiieiiinns 40
1.5 Transmission ProtOCOISuuvviiiiiiiiieeeeiicic s 41
1.6 ODJeCt DICHONAIY......iiiiieeeeeeieeiice e e e e e eeeaanes 41
1.7 Error Handling and RepOrtingcoooevevvieiimeiiieeeeeeeeeeeiiiinnn 42
1.8 Telegram Table (Predefined Connection Set).....cccc............... 43
2 CANOPEN USEr LAYEI ...cooveieiiiiii e eeeeeee e 45
2.1 Software SIHUCIUIEcoooeiiiie e 45
2.1.1 CANOPEN SEACK ...vvveeiiieeeeeiieieiiiiee e e e eee e e e 47
2.1.2 CDRV — Hardware-Specific Layercomeeevvvvvnnnnnn. 48
2.1.3 CCM — Application-specific Layerceemervuiieeeeeenn. 49
2.2 DIreCtory StrUCTUIEouuueiieie et cen e 52
2.3 Data SIUCIUIES .. .ot 54
2.4 ODbjJeCt DICHIONAIY.......cceveeiiiciee et 58
2.4.1 Object Dictionary for Standard 1/0O Devices.................... 59
2.5 Instanceability of the CANopen Layer........cccovvveivvviiiieeenenn. 65
2.5.1 Using the Instance Handle..............ccoiiceeeeeeiiiicii e, 66
2.5.2 Using INStance POINTEIScooeevivivvicmmmmmm e 67
2.6 Hints for Creating an Applicationccccaeviiiiiiiiiiiiiineeeeee, 68

2.6.1 Selecting the Required Modules and Configuration....... 68
2.6.2 Sequence of a CANopen application..........ccceeeeennnn.... 70

2.7 CCM Layer FUNCLONS...........ccuvuiiiiiie e eeeceeeie e 84
2.7.1 CcmMain Module

© SYS TEC electronic GmbH 2006 L-1020e_12

CANopen Software

2.7.2 CcmSdOC MOdUIEoeeviiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeee 107
2.7.3 CCMDIPAO MOAUIEooveiiiiiiiiiiiiiieees e 119
2.7.4 CcmObj Module..........cooiiiiiiiiii e 122
2.7.5 CcmLYS MOAUIEoviiiiieieciceeeee e 125
2.7.6 CcmStore Module...........uuuveviiiiiiiiiiiii s 128
2.7.7 CcmNMtM Module.......ccooviiiiiii e 137
2.7.8 CcmSnPdo Moduleouiiiiiiiiiie e, 144
2.7.9 CcmSync Module.........coovviiiiiiiieeeieeceee e 144
2.7.10CCMEMCC MOAUIEcuuiiiiiiiiiiiiiiiiiiiiii e 147
2.7.11CcmEmcp Module.........coooviiiiiiiiii e 151
2.7.12CcmHDbc Module ... e 158
2.7.13CcmHbp Moduleoovveiiiiiieie e 162
2.7.14TgtCav MOAUIE.........ueiiieieeeieeee e 162
2.7.15CcmBOOt MOUIEccvveeieeie e 173
2.7.16CcmFloat ModUIe.........ccooiviiiiiiiiiiiiiis s 174
2.7.17CcmMStPAO MOAUIEeeviiiiiiiiiiiiiiiiieeeeeeee e 175
2.7.18Ccm303 ModUle........eenieeeeiie e 181
2.7 . 1OCCIMLSS . it 188
2.7.20Communication Parameters and Process Variables...202
2.8 Description of the CANopen Stack Functions...................... 203
2.8.1 SDOS MOAUIEcoeeiiiiiiieieeieeeee e 203
2.8.2 SDOC MOUUIEuuiiiiiiiiiiiiiiiiiiiiieieies e e e e e e e e e e e e 225
2.8.3 PDO MOAUIE.....coiieeeeeeeeeeeeeeeee e 247
2.8.4 PDOSTC-MOAUIE........iiiiiiiiii e e e e 265
2.8.5 OBD MOUIEcccoiiieeeeece e 268
2.8.6 COBMOAUIEcooeiiiiieee e 288
2.8.7 NMT MOUIE......coiieiii et 295
2.8.8 NMT Slave Module..........cccooviiiiiiiiiiicceeee e 297
2.8.9 NMT Master MOdUIEuuuueueuimiiiriiiiiiinieeeieeieeeeeeeeee. 300
2.8.10Emergency Consumer Module............cccceeeeeiiiiniiinnnnnnn. 307
2.8.11Emergency Producer Module..............oouvveeeeeeiinnnnnnnnn. 313
2.8.12Heartbeat Consumer Moduleeevvevverieeeeeeeennnee. 318
2.8.13Heartbeat Producer Moduleeevvimeeeeeeeeennennnnnnn. 325
2.9 Add-on modules for the CANopen protocol stack................ 331
2.9.1 MPDO Module - Multiplexed PDO........ccooeevimaeennnee. 331
2.9.2 CcmMPdo Modul - Multiplexed PDO.............ccceveeennnnen 334
2.10 Meaning of Return Values and Abort Codes..............ccce..... 336
2.10.1CANopen Return Codes..........uviiiiiiiiiiieeceeiiiinne e 336
2.10.2SDO ADOIt COUES... .. 344
2.10.3Emergency Error Codesccovvvvviiiiiieeeeeniiiiiiieeeeeee, 346
2.11 Configuration and Scaling............cceeiiiieieeeeiiiiee e, 348

© SYS TEC electronic GmbH 2006 L-1020e_12

Contents

2.11.1Configuration of the CANopen Stackccceeevevennnns 348
2.11.2Configuration of the Object Dictionary........cccc.c..c......... 371
2.12 Characteristics of Hardware, Operating Systems and
Development ENVIrONMENTS..........ceiiiiieeiiieceiiiiieie e, 372
2.12.1Selecting the Address Space for Data Storage............372
2.12.20perating System PXROSoooiiiiiiiiiieieeeee e 372
2.12.3Linux Operating SYStem..........ccouvviiiiiiiieeeeiiiiie e 376
2.12.4Windows Operating SYStemMcoovvvvrenmmmmmeeeneeeeeeens 383
3 Hints for Porting to Other Target Platforms....................... 398
3.1 Global Definition File GLOBAL.H.........coooiiiiiiiiiiiiiiiieeeee 399
3.2 Selecting the CAN DIiVEI......ccccceiiiieiiiiii e e e e e 402
3.3 CAN Bit Rate Definitioncooevuiiiiiiins i 404
3.4 Target-Specific SEtliNgScoovvveeiiiiiiiiiieme e 405
3.4.1 Hardware Properties Definition.............ooeeeceeeiiiiieeennnns 405
3.4.2 Memory Management Definition, Standard Functions 405
3.4.3 Definition of Target-Specific Functions......................... 406
3.5 CPU Variable Byte Order Definition (Big Endian, Little
ENGIAN) ... e 408

3.6 Typical Configuration of a CANopen Device as NMT Sive .409
3.7 Typical Configuration of a CANopen Device as NMT Mater

410
4 Notes on CANopen Certificationccouvemeveiiiiiinnneenn. 412
D GlOSSAIY . cuui it 414
6 Revision History CANOPEeNn V5.XXocovvvviviiiiceeiiieeeeeeeeninnnn 416
INAEX e A2

© SYS TEC electronic GmbH 2006 L-1020e_12

CANopen Software

Index of Figures and Tables

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:

Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Figure 24:
Figure 25:
Figure 26:
Figure 27:

Overview of the CANOPEeN CONCEPL.......uviiiicccceciiieeeeeenn 14
Communication model for PDOScoiiiicccceeiiiiieeeeeee 17
Mapping of Object Dictionary entries into a PDQ............. 19
Data transmission of object data via SDO........................ 28
Structure of an emergency messagecccceeeeeveveveennnnn. 31
“Switch Mode Global” Serviceccoooviiiiveeeeeeeeeieeeeeeeeee 32
“Configure Bit TIMiNg” SErVIiCe.....cccovvieiiiimee e 33
“Response to Configure Bit Timing” SErvicCe oeeeeeee. 33
“Activate Bit TIMING” SEIVICEccovvivvimmmeeeeiiiiiiieae e 33
“Configure Node ID” SEIVICEuvviiiiimmm e 33
Response to “Configure Node ID” service......ccceeevvnnnn..... 34
NMT state machine for CANopen devices........ccccc......... 35
Response of the NMT slave to a Node Guarding reifinatee 36
Response from the NMT Slave to a Life Guarding remo
frAME . 37
Heartbeat MeSSageoovvvvviiiiiiiie e 38
Software StruCture OVEIVIEWccoevveeiiiiiiieeeieeeeeeeeeeeeee, 46
Data exchange between application and object datia..... 57
Sequence of a typical CANopen application.................... 71
NMT state machine according to CiA DS-301 V4.02....... 76
Additional NMT States........ccvvvviiiiiiiiiiiiiieeieiiieeeeeeeeeeeeeeeeeee 82
Sequence of a CANopen application...........cccceeeeeeeeee... 85
Call sequence for events in the LSS callback fonct....... 106

Call Sequence for the callback function CcmCStoesl(@bject
for an OD area.........ccccoeveeiiiiiii 135

Blinking cycles according to CiA DR303-3 (time irsjn.... 181
equence for NMT events in the NMT callback functian. 202
SDO Server Table.........oooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 204

Interfaces for modifying communication parametdra 8DO
1T Y= PP 206

© SYS TEC electronic GmbH 2006 L-1020e_12

Contents

Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

Figure 34:

Figure 35:
Figure 36:
Figure 37:
Figure 38:

Initiating an SDO downloadoeemmmmmeveveiiieeeennnnn. 211
SDO ClieNt tabIeuvviiiiiiiiiiiiiiiiiet e 226
Interface for changing SDO client parameters................ 228

Initiating an SDO downloadoeevmmmmmeervnnnneeeeeeeene. 229

PDO mapping example of the variables at static PEXPping266
Calling sequence of events for the object calldfacoktion

during @ SDO ACCESScevvviiiiiiiieiee e eee e eeee e 287
Calling sequence of svents for the object calllfacktion
during an access created from the application................ 287
Call Sequence of the CCM Functions with PxROS........ 375
Structure of CANopen Software under LinUX 377
Call Sequence of the CCM Functions with Linux........... 379
CANopen Software Structure under Windows............... 384

© SYS TEC electronic GmbH 2006

L-1020e_12

CANopen Software

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:

Table 25:
Table 26:
Table 27:
Table 28:

Example for mapping parameters for the first TPDQ....... 18

Mapping Table before changing the Mapping.................. 20
Mapping table after Changing the Mapping....cccee-.......... 21
Communication parameter for the first TPDO....co......... 21
Structure of a COB-ID for PDOS.........ccooiimeeevviiiiiiieeeaennnn 22
Transmission type for TPDOSccovvvvvimmmmmmee e, 26
Transmission type for RPDOS.........ccooooo e oo eeeevvvinnnnnns 27
SDO tranSfer tYPeS.....uuuiiiee e iiieeeeviimmmmmme et 29
Baud rate table according to CiA DSP-305........cccccceenn... 34
Node state of a CANOpPeNn deviCe........ccoeeevveeevevveeeiiinnnnnnn. 37
Heartbeat consumer configuration............cceeevvvevvvinnnnnnnn. 39
Structure of an Object Dictionary entry......cccceevevevevevennnnnn. 41
Pre-defined Master/Slave Connection Set [1] 44
CANOpeEN Stack SIrUCLUIEuueeeeee oot e e e e 48
CCM Layer fileS ..o 51
Object Dictionary for standard 1/0 devices.......cccc.....c..... 64
Meaning of instance macros as handle............ccccccvvveennn. 66
Meaning of Instance Macros as Handle.........ccceeenn... 67
Guide for selecting the required software modules........... 69

NMT state machine explanation (List of events amichmands)77
Supported communication objects in various NMTestd#l] 78

Parameters of the Structure tCcminitParam 88
Parameters of the structure tVarParam..........cc................ 94
Description of the Argument Pointers Based on theweter

g (0] (0T (= o TSR 101
Parameters of the Structure tNmtStateError 102
Parameters of the Structure tPdoError......ccceemeennnen..e... 103
Parameters of the structure tLssCbParam.....ccccc........... 105
Description of LSS eVeNtSviiiiiiiiiiieeeeeeeceiie e 105

© SYS TEC electronic GmbH 2006 L-1020e_12

Contents

Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:

Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:

Parameters of the tSdocParam Structure....................... 109
Parameters of the tSdocTransferParam structure.......... 113
Possible SDO transfer status values in tSdocState........ 116
Parameters of the Structure tPdoParamcccceeee.......... 121
Events for the Lifeguard Callback Function.................... 127
Assignment of the sub-indexes of object 0x101hen®D
sectiontobe saved ..., 131
Parameters of the structure tObdCbStoreParam............ 135
Tasks of the Callback Function CcmCbStoreLoadObject36
Description of NMT commandsccoooviicceeeeevvivnnnnnn. 140
Master callback function events...........oocceeeeiiiiieeeeeeee, 143
Parameters of structure tEmcParam..........cccceeeeeniiieen. 151
Events for callback function CcmCbEmpcEvent()...c...... 157
Parameters of the Structure tHbdProdParam................ 160
Event overview and description for heartbeat coresum... 161
Return codes for function TgtCavGetAttrib 172
Equivalent function for static PDO mapping.......c........... 176
Parameter of the tPdoStaticParam structure 178

States of the green LED according to CiA DR303-3...... 181
States of the red LED according to CiA DR303-3........... 182
Values for parameter State p of function Ccm303&eftate184
Values for parameter State_p of function Ccm303@etEtate186

Configuration settings for LSS master and slave............. 188
Effects of object properties on the SDO transfer............ 208
Denial of SDO download initiation at the SDO server.... 210

Denial of SDO Segment Download at the SDO Server..210

Denial of SDO upload initiation at the SDO server......... 212
Denial of an SDO segment download at the SDO serve?13

Selecting the CRC calculation algorithm......................... 214
Parameters of structure tSdosInitParam......................... 216
Parameters of structure tSdosParamcccaueeeerieeeenn. 222

© SYS TEC electronic GmbH 2006

L-1020e_12

CANopen Software

Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:

Table 85:
Table 86:
Table 87:
Table 88:

Rejecting the download response by the SDO Client.... 229

Rejecting an upload segment by the SDO client............ 230
Selecting the CRC calculation algorithm 230
Parameters of the tSdoclnitParam Structure.................. 232
NMT Events Processed by SdocNmtEvent................... 235

Parameters for the tSdocCbFinishParam Structure....... 242
PDO Transmission Types and Events for Sending PDO#A9
Events for calling a PDO callback function (Reckgipt...... 251
Events for calling a PDO callback function (Sending..... 252

OBD module configurationcoeevvimmmmmieeeeeeeeeeennnnnns 269
Partitions of the Object Dictionaryocceeeevviiiieeeennne. 275
Executable instructions to the Object Dictionary............. 276
CANoOpen Node StatesS........coooviieeiiiiiiiieerreeeiiee e eeeeeieens 278
Meaning of the Parameter Structure tObdCbParam...... 282
Events of the callback function for object access........... 284
Meaning of the parameter of structure tObdVStringiam 284
Calculating the number of communication objects......... 289
Parameters of the tCobParam structureweeeeeen... 290
Meaning of the Communication Object Types............... 291

Meaning of the NMT Commands.............ccevummmmmmereeennnnnns 296
Meaning of the tNmtmSlaveParam structure parameter803
Meaning of the tNmtmSlavelnfo structure parameters.. 305

Parameters of structure tMPdoParam............ccccvvvvnnnnnn. 333
SDO ABOrt COES ... 345
Emergency Error Codes according to [4]cceeeeeeeennnn. 347
Additional Parameters of the Structure tCcminitirafar
Implementation of Multiple CAN Driversccccceeveeeeee. 350
Function Prefix for the CAN Driver............cmmeeeeeeeennnnnnn. 352

Properties for Executing Process Functions...................
Setting Time Monitoring for the PDO Module 364
Additional Parameters in the Structure tCcminitRara..... 374

© SYS TEC electronic GmbH 2006 L-1020e_12

Contents

Table 89:
Table 90:

Table 91:
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97:

CCM Thread Events under LiNUX............eevummmmmmneeeeeeneennn. 382
Module Configuration of CANOPMA.DLL and
CANOPSL.DLL .c.coiiieieececeee e 384
Module Configuration of CCMMA.DLL and CCMSL.DLL 385
Thread Evemts for CANopen under Windows............... 395
Memory Type Definition for Various Target Systems..... 401
List of Currently Available CAN Drivers........cccuceeeeeeene.. 403
Bit Rate Configuration File Overview..........cccccvevvvvvnnnnn.. 404
List of Application-Specific Macros...........ccceeeeeeeeeeeeeennnns 405
List of Target-Specific FUNCLIONSccoi e 407

© SYS TEC electronic GmbH 2006 L-1020e_12

CANopen Software

© SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

Preface

This manual describes the application layer as wadl the supported
communication objects of the CANopen stack for paogmable CANopen
devices. Device profiles are profile-specific ams$ctibed in a separate manual.

Section1 provides general information on CANopelated terms and
concepts.

Section 2 describes the implementation of the CAdwogtack protocol by
SYS TEC electronic GmbH and gives detailed inforamaabout the
user functions, their interfaces and data strusture

Section 3 provides specific information on how tseuand implement the
CANopen stack in a user application with regardsthe user
hardware, the operating system and developmentamaent.

© SYS TEC electronic GmbH 2006 L-1020e_12 11

CANopen Software

12 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

1 CANopen Fundamentals

CANopen is a profile family for industrial commuaion with distributed
automation control devices based on the CAN-buswvds developed by the
manufacturer and users association Tafd has been standardized since late
2002 as CENELEC EN 50325-4. CANopen has establigsetf in a number of
areas of industrial communication (e.g. mechanaajineering, drive systems
and components, medical devices, building automatieehicle construction,
etc.). The fundamental communications mechanisrasdascribed in so-called
Communication Profiles.

Frameworks complement the communication profile $pecific applications.
This is how frameworks are defined for safety-caamgldata transfer ("CANopen
Safety") or for programmable devices (e.g. PLCé)e $o-called object directory
is the central element of every CANopen device dedcribes the device's
functionality.

1. CAN in Automation e.V. Founded in March 1992, Cpkovides technical, product and
marketing information with the aim of fostering QGaoller Area Network’s image and
providing a path for future developments of the Cgdtocol.

© SYS TEC electronic GmbH 2006 L-1020e_12 13

CANopen Software

1.1 What is CANopen?

CANopen defines the application layer, a commuriocaprofile as well as
various application profiles.

Device Profilg Device Profile
1/0 Module Drives
CiA DSP-401 CiA DSP-402

;

seccecace Application Profile

Application Layer
CANopen-API CiA DS-301
Framework
Object Dictionary CiA DSP-302
CiA DSP-304

!

Communication Profile

Communication Objects CiA DS-301
Framework

|PDo| |SDO| |SYNC| |Emergency CiA DSP-302

CiA DSP-304

{

CAN Bus

Figure 1: Overview of the CANopen concept

The application layer provides confirmed and unconfirmed services to the
application and defines the communication obje8&stvices are used to, for
example, request data from a server.

Communication objects are used for data exchangein@nication objects are
available for exchanging process and service dataprocess or system time
synchronization, for error state supervision as waglfor control and monitoring
of node states. These objects are defined by sheicture, transmission types and
their CAN identifier. The specific parameters of@mmunication object, such as
the CAN identifier used for data transmission, tin@nsmission type of a
message, the inhibit tirler event timé are specified by the communication
profile.

1. The interface to the application (API) is notidefl by the application layer and depends on
the manufacturer-specific implementation.

2. The transmission type defines the properties ifutiating a transmission. Available
transmission types are cyclic and acyclic as welynchronous and asynchronous.

3: The inhibit time specifies the time that mustpsia between two message transmission before
a new transmission can be initiated.

4 An asynchronous TPDO (transmit PDO) will be s&fter the event time has elapsed.

14 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

The order of and the rules for a data transmisk&iween communication objects
are described by protocols (., download, ..).

The application layer and the communication objedts not define the
interpretation of the transmitted data, howeveterpretation of these data is
defined in the application profile respectivelye tthevice profiles. Device profiles
are available for different device classes, suctW@smodules (CiA DSP-401),
drives (CiA DSP-402) and human-machine interfatddlj (CiA DSP-403). The
standardization of device-specific data interpretatallows the building of
partially exchangeable devices.

Each CANopen device features an Object Diction&@) as the main data
structure. The Object Dictionary serves as the amndata exchange medium
between the application and the CAN bus commumpatAccess to the OD
entries is possible from both sides; from the agpion as well as from the CAN
bus via specific messages. These OD entries catoihs&dered as variables or
fields from the programmer’s point of view.

Each entry in the Object Dictionary has an inded arsub-index assigned to it.
Using this index structure it is possible to clgaalddress an OD entry. The
CANopen stack provides API functidn® define entries in the Object Dictionary
as well as to read or write these entries. Withhile of communication objects it
is also possible to access the Object Dictionagr tive CAN bus.

Properties have to be defined for each entry in Glingect Dictionary. These
properties include the data type (UNSIGNEDS8, aadous attributes such as the
access rights (read-only, write-only, , the trarssion of the data in a PBOr
supervision of the value range via its limitingwes.

The application layer and the communication pradite thoroughly described by
the CiA DS301 specification. Use of CANopen frameggoextensions of this
standard is described for specific applicationsesehframeworks define further
rules as well as specific communication objects. &mample, the CiA DS301
defines network management objects (Node Guardifg, Use of these objects
for supervision of CANopen devices is describedhgy/framework.

The following CANopen frameworks are available:
Framework for programmable CANopen devices (CiA E3BR)
Framework for safety-relevant data transmissioi\(CE5P-304)

Definition of the API functions is manufacturgregific.

Entries can be ,mapped" into a PDO for transmissis process data object.

Only such values are written to an entry if tlaeg within the limiting value ranges. All other
values will not be accepted.

© SYS TEC electronic GmbH 2006 L-1020e_12 15

CANopen Software

Summary of advantages using CANopen:
vendor-independent standards
open structure

real-time communication for process data withouttqeol
overhead

modular, scalable structure that can be tailorethéoneeds of the
user within a wide range of networked automatiomticd
systems

comprehensive functionality for communication aneétwork
supervision tasks

support of system integrators by configuration augbervision
tools

profiles oriented on Interbus-S, Profibus and MMS

CANopen provides the following possibilities for ato configuration of CAN
networks:

easy and unified access to all device parameters
cyclic and event-driven data transfer
device synchronization especially for multi-deveystems

SYS TEC electronic Gmbeéffers the following products and services to supp
customers in the design of their CANopen applicetio

Implementation of own CANopen master and slave sode
Independent consultancy

Development of hardware and software

System integration and certification support

CAN / CANopen seminars

The engineers o8YS TEC electronic Gmbirhve many years of experience with
a variety of CAN applications and patrticipate i tBpecial Interest Group SiG
"Programmable Devices" and "CANopen Safety".

16 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

1.2 Communication Objects

Communication objects (COB) are used for transmission of data. The
communication profile defines the parameters ofividdal communication
objects.

Depending on the communication objects differer@ngmission types and
protocols are available. Connection of communicabbjects over the CAN bus
is accomplished via CAN identifiers. The recipi@ita communication object
must have the same COB identifier (COB-ID, CAN itlger) as the sender of
this message. Communication objects for unconfigniprotocols (PDO,
Emergency) possess one COB identifier (COB-ID, CAdéntifier) while
communication objects for confirming protocols (SD@Possess two COB
identifiers (one identifier each direction).

1.2.1 PDO - Process Data Objects

Process data objects (PDO) are especially suiteta$d transmission of process
data. The communication model for PDOs definesPD® producer and one or
multiple PDO consumers.

»| PDO-Consumerl

» PDO-Consumer2

PDO-Producer

» PDO-Consumer3

»| PDO-Consumer4

Figure 2: Communication model for PDOs

1. CANopen defines different communication objedtattare specifically tailored to various
tasks and requirements. For example, process dataaasmitted without protocol overhead
in a single CAN message. Service data objects dsiti@nal security mechanisms for
supervision of the data transfer between two nodies. data contents of such an (SDO)
object can be transmitted via multiple CAN messages

© SYS TEC electronic GmbH 2006 L-1020e_12 17

CANopen Software

The reception of a PDO is not acknowledged by tBb® Ronsumer. The PDO
producer transmits a PDO, such PDOs are callegrtridrPDOs (TPDOs). The
PDO consumer receives a PDO, consequently such REO=alled receive PDOs
(RPDOs). Successful reception of a PDO is not askedged. Multiple PDO
consumers may exist for one PDO producer. A PD@umrer is assigned to one
or multiple PDO consumers with the help of its C@B-This is also called PDO
linking?.

Transmission of a PDO is triggered by an eventhSwents can be the change of
a variable that is represented by this PDO, expmabf a time or receipt of a

certain message. Process data is transmitted wiginotocol overhead directly in
a single CAN message. The length of a PDO can tveclea 0 to 8 data bytes.

PDOs are described by their mapping parameters taenl communication

parameters. The maximum number of TPDOs as welRRBOs that can be
defined is 512. A simple CANopen device typicallypports 4 PDOs. The actual
number of PDOs is defined by the application ortbg device profile for a

specific CANopen device.

1.2.1.1 Mapping Parameters — What is the structure of a PDQ

A PDO consists of adjacent entries in the objedtiahary. The so-called
mapping parameters define the connection to theseg A mapping parameter
defines the source of the data via index, sub-inded number of bits. The
destination, i.e. the placement within a CAN messag defined by the order of
the mapping parameters in the mapping table as agethe number of bits for
each data.

Example:

Index |Sub-index |Object Data |Description

0x1A00|0 4 Number of mapped entries

1 0x20000310 | The entry at index 0x2000, sub-indexit
a length of 16 bit, is mapped to bytes 0 and 1
within the CAN message.

2 0x20000108 | The entry at index 0x2000, sub-indexith
a length of 8 bit, is mapped to byte 2 withil
the CAN message.

—

Table 1: Example for mapping parameters for thetfirPDO

1. PDO linking can be supported by graphical corfigion tools especially for more complex
applications requiring many connections between ®®Bnd RPDOs.

18 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

A CAN message can contains a maximum of 8 datasbyieis means that when
using a PDO, up to 8 object dictionary entries lsatransmitted in one PDO.

Object Dictionary

|Entry 1: UNSIGNEDS Varl |

|Entry 2: UNSIGNEDS Var2 |

Generating the Mapping parameters

|Entry 3: UNSIGNED16 Var3 |

|Entry 6: REAL32 Var6 |

PDO 1 v

Mapping parameter

Index, subindex, entry 3

/' Indgx, subindex, entry 1
Index, sybindex, entry 2
/}ﬁdex, sﬁbindq,x, entry 6

/7 1

'

[entry1] entry2 [entry6

COB identifier [entry 3

Figure 3: Mapping of Object Dictionary entries indoPDO

Mapping parameters are entries in the Object Dhetip (RPDOs: index 0x1600 —
0x17FF, TPDOs: 0x1A00-0x1BFF) and therefore carrdasl via the CAN bus
using service data objects (SDO) and, if permifiedrite access is enabled for
this entry), be modified as well. The PDO mappiag be done statically. In this
case mapping parameters can not be changed. Dapgemlithe device profile or
application specification, it is also possible teange the PDO mapping of a
CANopen device at runtime. This is called dynamiapping. Modification of
mapping parameters is described in the examplenbelo

1. Dynamical mapping requires that the modified magpparameters are stored on a non-
volatile memory on the target device. If this ist mssible (no non-volatile memory
available) the system configurator must restorentapping upon network bootup.

© SYS TEC electronic GmbH 2006 L-1020e_12 19

CANopen Software

Example of changing the mapping parameters for a TBO:

Entries of the object dictionary are mapped int® finst TPDO in the following

order and length:
Index 0x2000, sub-index 3, length 16 bit
Index 0x2000, sub-index 1, length 8 bit
Index 0x2000, sub-index 2, length 8 bit
Index 0x6000, sub-index 6, length 32 bit

Index |Sub-index |Object Data |Description

0x1A00|0 4 Number of mapped entries
1 0x20000310 | UNSIGEND16 at index 0x2000, sub-in8lex
2 0x20000108 | UNSIGENDS at index 0x2000, sub-index 1
3 0x20000208 | UNSIGENDS at index 0x2000, sub-indeX 2
4 0x60000620 | REAL32 at index 0x6000, sub-index 6

Table 2: Mapping Table before changing the Mapping

The resulting length of the CAN massage for trassian of this PDO is 8 bytes.

Now, instead of transmitting the entry at index @3@, sub-index 6 the index
entry 0x2000, sub-index 4 with a length of 16 hido be transmitted. Before
changing the mapping parameters the current camtigun must be deactivated.
This is done by writing the value 0 to sub-indeixi@he mapping tablé.

Note:

Before performing a new mapping the user must enthat sub-index 0 of thi
mapping entry contains the value 0. If this is tiw case, the SDO abort co
0x06010000 (unsupported object access) is returped an attempt to remap.

[eXN7}]
(¢}

With the help of a SDO download the new configunatcan be stored in the
mapping table. The new configuration becomes vaftidr writing the value 4 to
sub-index 0 in the mapping table.

1. Deactivating the current configuration causesnapping parameter to become invalid and
they will be erased.

20 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

Index |Sub- Object Data | Description
index

0x1A00|0 4 Number of mapped entries
1 0x20000310, UNSIGEND16 at index 0x2000, sub-in8lex
2 0x20000108 UNSIGENDS at index 0x2000, sub-intlex
3 0x20000208 UNSIGENDS at index 0x2000, sub-in2lex
4 0x20000610, UNSIGNED16 at index 0x2000, sub-in@lex

Table 3: Mapping table after Changing the Mapping

The resulting length of the CAN massage for tragsion of this PDO is now 6
bytes.

1.2.1.2 Communication parameter - Which transmission types are
available for PDO?

The communication parameters define the transnmgsioperties and the COB-
IB (CAN identifier) for transmission of a PDO. Camniration of the

communication parameters has a direct impact on fteguency of PDO

transmissions and hence on the CAN bus load.

Index | Sub-index Object Data Description
1800h|0 Number on entries

1 COB-ID CAN identifier for the PDO

2 Transmission Type | transmission type of the PDO

3 Inhibit Time minimum inhibit time for a TPDO

4 reserved reserved

5 Event Time maximum time between two TPDOs
Table 4: Communication parameter for the first TPDO

PDO communication parameters are entries in thecoldjictionary (for RPDOs:

index 0x1400 — Ox15FF, for TPDOs: index 0x1800-(®pthat can be read and,
if permitted, changed via the CAN bus with the helpservice data objects
(SDO).

© SYS TEC electronic GmbH 2006 L-1020e_12 21

CANopen Software

1.2.1.3 COB-ID (CAN identifier, sub-index 1)

The COB-ID serves for identification and definitioh the PDO’s priority upon
bus access. Only one sender (producer) is alloweded&ch individual CAN
message. It is, however, possible that multipleeikees (consumers) for this
message exist.

Bit 31 |30 |29 [28-11 10-0
11-bit-ID |0/1 | 0/1 | O | 000000000000000000 11-bit ickesrt

29-bit-ID |0/2 |0/1 |1 29-bit identifier
Table 5: Structure of a COB-ID for PDOs

Bit 30 defines the access rights, bit 30=0 meaatahlremote transmission request
(RTR) for this PDO is permitted. Using bit 31 th®® can be deactivated for
further processing.

Note:

Since CiA DS 301 V4.02 a new procedure for changmigthe mapping and
communication parameters applies.

Before bit 0 to 29 can be changed, you need tbis8tL of the COB-ID to 1. By
doing this, the PDO becomes disabled and it isnatbto change the parameters.
The same procedure has to be followed for chantlfiagransmission type (sub-
index 2).

The CANopen standard defines COB-IDs (default ifien) for the first 4 PDOS
depending on the node number (Predefined ConneSebrrefer to section 1)8
Communication between slave nodes is only possitdea CANopen master
when using these default identifiers. This, howewatl result in an increased
CAN bus load since data exchange between two slasles requires sending the
message from the first slave to the master firdtfawm there to the second slave.
CANopen offers the possibility to adjust the CANeimdifier for a given
communication object. For example, the CAN ideetifior a TPDO can also he
assigned to a RPDO. With this, it is possible t@mal@sh direct communication
between two slave nodes without a master node. @ksmgnment of CAN
identifiers for PDOs is also called PDO linking.

This PDO linking is described in more detail usihg following example:

Inputs 2 and 3 of device “A” are to be transferredhe outputs 1 and 3 of device
“B”. Both devices support complete mapping.

22 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

Device A:
0x1000 Device Type
0x6000,1 Input 1, 8 Bit .
0x6000,2 Input 2, 8 Bit \
0x6000,3 Input 3, 8 Bit \ \
TPDO Mapping Parameter: \
0x1A00,0 Number of entries 2 \
0x1A00,1 1.Map Object 0 00208
0x1A00,2 2.Map Object 0x60000308
TPDO Communication Parameter:
0x1800,0 Number of entries 2
0x1800,1 QOB-ID 0x01CO0
0x1800,2 Transmission Type 255
Resulting TPDO:
COB-ID DATA
0x01CO nput 2 Inplit 3

© SYS TEC electronic GmbH 2006 L-1020e_12 23

CANopen Software

Device B:
0x1000 Device Type
0x6200,1 Qutput 1, 8 Bit
0x6200,2 Qutput 2, 8 Bit \
0x6200,3 Qutput 3, 8 Bit v\
\\
RPDO Mapping Parameter:
0x1600,0 Number of entries 2\
0x1600,1 1|Map Object 0x6¥000108
0x1600,2 2{Map Object 0x62000308
RPDO Communication Parameter:
0x1400,0 Number of entries 2
0x1400,1 goB-ID 0x01CO0
0x1400,2 Transmission Type 255
Resulting RPDO:
COB-ID DATA
0x01CO0 Output 1 Oufput 3

Transmit and receive PDOs utilize the same CANtiflen0x01CO0. Thus device
B automatically receives the PDO transmitted byice. The recipient device B
analyzes the data in accordance to its mappingrsehet passes the first byte to
output 1 and the second byte to output 3. On therobhand, the transmitting
device A stores its inputs 2 and 3 in exactly thieges. This proofs the correct
input/output assignment and PDO mapping.

24

© SYS TEC electronic GmbH 2006

L-1020e_12

Fundamentals

1.2.1.4 Transmission Type, Sub-index 2

The transmission type of a TPDO defines under wlticbumstances data are
collected (e.g. input values read) and a PDO isstratted. For RPDOs the
transmission type defines how data received inRB® is put through to the
outputs of the device. Transmission can be inidigeent-driven, synchronized or
in polling mode.

a) TPDOs

A TPDO can be transmitted cyclic or acyclic. Cydiansmission takes place
after receipt of a cyclic SYNC messagi this case, it is unimportant whether
input data has has changed or not. If the trangoniggpe of a TPDO is set to

acyclic the corresponding TPDO is sent only afteedain event occurred. Such
an event can be the reception of a SYNC messagigrage of the input data, the
expiration of an event timer periddr a remote frame.

b) RPDOs

RPDOs will always be received. However, data comtiin the RPDO will only
be put through to the corresponding outputs ifaserévents occur. Such an event
can be the reception of a SYNC message or a charipe receipt data compared
to the previous RPDO. As an option, the event tirf(grb-index 5) can be
configured as supervision time for any transmisgipe. If a PDO is received
outside of the period configured with the eventetjrthen the application will be
informed 6eeCcmCbError Section 2.7.1)8

1. A SYNC message is a CAN message without dataeobrdand is used to synchronize
communication objects of other connected nodes. SYWBIC producer is responsible for
cyclic transmission of the SYNC message.

2: An event timer can be used to initiate transroissif a PDO after the event time is expired
even if the data within the PDO have not changé dvent time is configured with the help
of sub-index 5.

© SYS TEC electronic GmbH 2006 L-1020e_12 25

CANopen Software

Transmission

Data requisition Transmit PDO
type

0 Data (input values) are read updhthe PDO data has changec
receipt of a SYNC message. |compared to the previous PDO
content then the PDO will be
transmitted.

1-240 Data is collected and updated upon recéifhie n-th number of
SYNC messages and then transmitted on the bus. The
transmission type corresponds to the value of n.

241-251 reserved

252 Data (input values) are read ugdrhe PDO is transmitted upor
receipt of a SYNC message. |request via a remote frame.

253 The application continuously
collects and updates the input
data.

254 The application defines the event for dataisgipn and
transmission of a PDO. An event that causes trasssom of a
PDO can be the expiration of the event timer. TWenetimer
period is configured with sub-index 5. Transmissaba PDO
(independent from the event and if the event tiwes
configured) always starts a new event timer period.

255 The device profile defines the event for datpiisition and
transmission of the PDO. An event that causesnessson of a
PDO can be the expiration of the event timer. TWenetimer
period is configured with sub-index 5. Transmissaba PDO
(independent from the event and if the event tiwes
configured) always starts a new event timer period.

Table 6: Transmission type for TPDOs

26 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

D

the

e

=

Trans-

mission |PDO receipt Data update

type

0 The PDO will always be Data is analyzed upon receipt of a

receipt. Analysis and, if SYNC message. If the data has

required, update of the data |changed compared to the previous

occurs upon receipt of the nextRPDO, then it will be updated on th

valid SYNC message. outputs. Transmission of the SYNC
message is acyclic.

1-240 Data is analyzed upon receipt of the
n-th number of SYNC messages. If
the data has changed compared to
previous RPDO, then they will be
updated on the outputs. The
transmission type corresponds to th
value of n. Transmission of the SYN
message is cyclic.

241-251 | reserved

252 reserved

253

254 The PDO will always be The application defines the event fqg

receipt. updating the output data.

255 The PDO will always be The device profile defines the event

receipt. for updating the output data.

Table 7: Transmission type for RPDOs

1.2.1.5 Minimum Inhibit Time, Sub-index 3

The inhibit time represents the minimum time thatisin elapse between
transmission of two TPDOs. This enables a reductibthe bus load and an
increase in data bandwidth.

The inhibit time is stored as UNSIGNED16 valueteps of 100 us.

© SYS TEC electronic GmbH 2006

L-1020e_12 27

CANopen Software

1.2.1.6 Event Time, Sub-index 5

a) TPDOs

After the event time has expired a TPDO is sengnet the data content of the
PDO has not changed compared to the previous trasiem. The event timer is
restarted after each transmission. Hereby it ismportant whether the

transmission was caused by the expiration of tlentetime or the change of the
PDO data. This allows configuration of periodic P@@nsmission. An inhibit

time, configured via sub-index 3, will not be calesied.

Resetting the event time to zero (zero is the defalue) results in deactivation
of the event timer. Transmission of the PDO is tloafty possible if the data
content changes. The inhibit time will be considarethis case.

b) RPDO

The event timer (sub-index 5) can be configuredsagervision time if the
transmission type 254 or 255 is selected. If no A®eceived within the period
configured with the event time, then the applicatiall be informed.

1.2.2 SDO - Service Data Objects

The Object Dictionary serves as primary data exgbamedium between the
application layer and the communication layer. ddita entries for a CANopen
device can be managed within the Object Dictiorf@®). Each OD entry can be
addressed using index and sub-index. CANopen defswecalled service data
objects (SDO) that are used to access these entries

Communication
Layer

Index Subindex| Attributeg Data

0x2000 | 1 rw
0x2000 | 2 ro
0x6200 | 0 ro < » SDO |<4——» | CANBus

Figure 4: Data transmission of object data via SDO

The communication model used for this data exchasdeased on the client-
server structure. A read or write access is alwayiated by a client and is served
by a server. Each CANopen device must have an SI&Isto access its object
dictionary.

28 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

SDO transmission requires two different COB IDs (CAdentifier). The first
COB ID is used to transmit the request from therntlito the server. The server
sends its response back to the client using thense€COB ID. Different COB IDs
must be used for each direction in order to avoitistons on the CAN bus. The
communication profile defines the COB IDs that dddoe used for the default
SDP server. Each CANopen device may possess Wrt8MDO servers.

The CANopen standard CiA DS-301 defines differemttqrols for transmission
of SDOs.

Protocol Data Length | Description

expedited transferl — 4 bytes Data is already transmitted when fiitia
the data transfer. This protocol must be
supported by each CANopen device.

segmented 1 - >64 kByte | Only the length of the upcoming data
transfer package is transmitted when initiating the
data transfer. Data is transmitted in
segments of 7 data bytes and one protoqgol
byte each. Each segment is confirmed by a
response message.

block transfer 1 - > 64 kBytegOnly the length of the upcoming data
package is transmitted when initiating the
data transfer. Data is transmitted in
segments of 7 data bytes and one protoqgol
byte each. Up to 127 segments are
transmitted within one block. Only
complete blocks are confirmed by a
response message. Lack of confirmation|for
each segment increases the data throughput
on the bus especially when transmitting
larger data packages.

Table 8: SDO transfer types

Reading of OD entries is called ‘upload’, writinentries is called ‘download’.
An ongoing transmission can be terminated by aesewa client with the help of
the abort transfer service.

© SYS TEC electronic GmbH 2006 L-1020e_12 29

CANopen Software

1.2.1 Synchronization Objects

The synchronization mechanism used in CANopen setheon the producer-
consumer scheme. One producer exists in the nettatlcyclically transmits the
SYNC message. The SYNC message contains no data.

The identifier for this SYNC message is specified abject dictionary entry
0x1005. This entry furthermore configures whether device is SYNC producer
or SYNC consumer.

Two other object dictionary entries specify the itigh properties during

transmission. The time interval between two subsegSYNC messages is
defined in entrylCommunication Cycle Tim@x1006). The time interval in which
the TPDOs must be transmitted at the latest afteeiving a SYNC message is
configured with theSync Window0x1007) entry.

For each device supporting synchronous PDOs the (GYiessage has the
following meaning:

TPDOs: update the data to be sent and subsequent tissismiof the PDO
within the synchronization window

RPDOs: output the data received in the previous PDOngdutihe most recent
synchronization interval to the corresponding otgpu

1.2.2 Time Stamp Object

CANopen provides a mechanism that allows for symization of all network
nodes. This service is based on the producer-comsunodel. One TIME
producer exists in the network that provides themmmon reference time for all
nodes (consumers).

The identifier for the TIME message is defined wathject dictionary entryfime
Stamp Objecf0x1012).

1.2.3 Emergency

CANopen supports the application to indicate estates over the CAN bus. Two
error categories can be distinguished:

30 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

Communication Error

The network layer can recognize and report th@Walg errors:
- frequent occurrence of errors while transmittingssages
- bus-off state of the CAN controllérs
- Transmit buffer overflow
- Receive buffer overflow
- Loss of Heartbeat or Life-Guarding
- CRC error in SDO block transfer

Application Error

Application errors are errors such as short cirauntder-voltage, exceeding
temperature thresholds, code or RAM errors as wsll conditions not
permitted such as alarms and disturbances.

The Application and network layer signalize suchoex. However, it is the
application’s task to analyze, process and sigeatizese errors. CANopen
provides the communication obje&mergency’to report such errors over the
CAN bus.

Identifier | Data

0 1 2 3 4 5 6 7

0x080+ |Emergency |Error
Node Error Code |Register

Number |Index 0x1003| 0x1001

manufacturer-specific information

Figure 5: Structure of an emergency message

The DS-301 standard as well as the applicable depiofiles for CANopen
define specific error codes for transmission ofoerstates. The emergency
message can also contain manufacturer-specific tiiatafurther describes the
error. The transmitted error code indicates therethat occurred. The error
register assigns certain categories to groupsroferand indicates if errors still
exist within the corresponding category. If theoerdisappears, the CANopen
device will transmit a message with the error cazet (high portion equals zero).
At the same time, the data content of the erroistegthat is also transmitted in
this message indicates if other errors still exist.

1. Each CAN controller has an internal error counféris error counter is decremented after
successful communication. If the error counter erlsecertain error limits it causes the CAN
controller to shut off. It then will no longer paipate on further communication unless the
application resets the CAN controller or its errounter.

© SYS TEC electronic GmbH 2006 L-1020e_12 31

CANopen Software

Errors, that are caused by improper access to tolg@tionary entries or
interrupted transmission of SDO services, will leparted by arfabort SDO
transfer servicemessage in CANopen.

1.2.4 Layer Setting Service (LSS)

In the CiA DSP-305 standard CANopen defines lastirgy services (LSS) to
allow configuration of base parameters (baud maele number) for devices that
do not provide any means of external mechanicafigaration (e.g. via DIP or
HEX switches). The LSS master can change the batedand node number of a
CANopen LSS slave over the CAN bus with the heldager setting services
(LSS). First the LSS master renders all LSS slavesconfiguration mode. Then
the LSS master transmits the new baud rate usieagQbnfigure Bit Timing’
service. The LSS slave now responds with a CAN agesshat indicates whether
this new baud rate is supported by the LSS slaveobrlf the LSS slave accepts
the new baud rate the LSS master sendsAbivate Bit Timing'service to the
LSS slave. This informs the LSS slave to activhteriew baud rate after a time
called ‘switch_delay: After successful completion of this cycle the L8@ster
renders the LSS slave back into operational mode.

The LSS service can also be used to change theauuhtess of an LSS slave. For
this, the LSS master renders all LSS slaves intdigaration mode again. Then
the LSS master transmits the new node addresd.38eslave now responds with
a CAN message that indicates whether this new nmadaber is within the
supported range of node numbers for this node. Wvaitching the LSS slave
back into operational mode, a software reset e&agad. This causes the LSS slave
to configure its communication objects based onnée node numbefrefer to
sectionl.8).

Identifier |DLC Data
0 1 2 3 4 5 6 7

Ox7E5 8 0x04| mod reserved
Figure 6: “Switch Mode Global” service

mod: new LSS mode
0 = switch to operational mode
1 = switch to configuration mode

32 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

Identifier DLC |[Data
0 1 2 3 4 5 6 7

OX7E5 8 0x13| tab ind | reserved

Figure 7: “Configure Bit Timing” service

tab: indicates the baud rate table to be used
0 = Dbaud rate table as defined according to CiA D8P

1 127 = reserved

128 ... 255 = car;'i)e defined by the user
ind: index within the baud rate table in which the reawud rate for the CANopen

device is stored

Identifier DLC Data
0 1 2 3 4 5 6 7

OX7E4 8 Ox11| err speg¢ reserved
Figure 8: “Response to Configure Bit Timing” sergic

err: error code

0 = operation completed successfully
1 = baud rate not supported
2 254 = reserved

255 = special error code spec
spec manufacturer-specific error code (onlyeif = 255)

Identifier DLC |[Data
0 1 2 3 4 5 6 7

OX7ES5 8 O0x15| delay reserved
Figure 9: “Activate Bit Timing” service

delay. relative time until activating new baud rate firg]

Identifier DLC [Data
0 1 2 3 4 5 6 7

OX7E5 8 0x11| nid | reserved
Figure 10: “Configure Node ID” service

nid: new node address for the LSS slave (values pewnit to 127)

© SYS TEC electronic GmbH 2006 L-1020e_12 33

CANopen Software

Identifier DLC |[Data
0 1 2 3 4 5 6 7

Ox7E4 8 Ox13| err speg reserved

Figure 11: Response to “Configure Node ID” service

err: error code

0 = operation completed successfully
1 = node address invalid (only values 1 to 127 gvermitted)

2 254 = reserved

255 = special error code spec
spec manufacturer-specific error code (onheifr = 255)

Table Index Baud Rate SYSTEC Definition in gdrv. h]
0 1000 kBit/s kBdilMbaud

1 800 kBit/s kBdi800OkBaud

2 500 kBit/s kBdi500kBaud

3 250 kBit/s kBdi250kBaud

4 125 kBit/s kbdi125kBaud

5 100 kBit/s kBdi100kBaud

6 50 kBit/s kBdi50kBaud

7 20 kBit/s kBdi20kBaud

8 10 kBit/s kBdilOkBaud

Table 9: Baud rate table according to CiA DSP-305

Note:

The clock speed for various CAN controllers migatdifferent depending on the
hardware that is used. Thus differences in thestegvalues for the corresponding
baud rate may occur.

The CiA DSP-305 standard also describes further E&S8ices. Description @
these services is not provided in this manual. d&legefer to applicabl
documentation provided by the CiA User’s group.

b =

34 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

1.3 Network Management

Several other network services for supervisionattiworked nodes are provided in
CANopen besides the services for configuration aada exchange. NMT
(network management) services require one CANopercd in the network that
assumes the tasks of an NMT master. Such tasksdmgchitialization of NMT
slave, distribution of identifiers, node supervisiand network booting among
others.

1.3.1.1 NMT State Machine

CANopen defines a state machine that controls thmetionality of a device.
Transition between the individual states is ingehy internal events or NMT
master services. These device states can be cedrtecipplication processes.

power on

— b Initialifmﬂ/:

(11) (12) (10)

A

8)

(6) r ® @
6

Stopped

\4

)

Operational

Figure 12: NMT state machine for CANopen devices

In Initialization state, the CANopen data structures of a nodenéralized by the
application. The CiA DS-301 standard defines vagimandatory OD entries for
this task as well as specific communication objeetguired for that. In the
minimum device configuration, the identifier forede communication objects
must correspond to the so-callBde-Defined Connection-Sef(refer to section
1.8). The device profiles define further settings tbe applicable device class.
The pre-defined settings of the identifiers for ege@acy messages, PDOs and
SDOs are calculated based on the node address (Bydehich can be in the
range from 1 to 127, added to a base identifier degermines the function of the
individual object.

After Initialization is completed the node automatically switches IRRE-
OPERATIONAL (12) state. The NMT master will be informed abthus state
change with the BOOTUP message sent by the comdsppnode. In this state it
IS not possible to communicate with the node usibgs. However, the node can
be configured over the CAN bus using SDOSPIRE-OPERATIONAL state.
NMT services and Life Guarding are also availahléhis state.

© SYS TEC electronic GmbH 2006 L-1020e_12 35

CANopen Software

The application as well as the available resouraedhe CANopen device
determine the amount of configuration via SDO awer CAN bus. For example,
if the CANopen device does not provide a non-vi@atiemory to store mapping
and communication parameters for PDOs and thesamgders differ from the
default values, then these parameters must bentitied to the node over the
network after initialization is completed.

After the configuration of these parameters byapplication or the NMT master
is completed, the NMT servicgtart Remote_Nod@) can be used to render the
node fromPRE-OPERATIONAL state intoOPERATIONAL state. This state
change also causes the initial transmission ofRIDOs independently of whether
an event for it is present. Each subsequent trassom of PDOs then always
takes place as a function of an event.

All CANopen devices also support thetop Remote Nodé€7), Enter PRE-
OPERATIONAL_Staté8), Reset_Nod¢10), Reset_ Communicatigiil) services.
Reset_Nodés used to reset the application-specific data thedcommunication
parameter of the node.

The poweron values or values stored in non-volatiéenory (if previously stored)
are used for reset values. The CANopen data stegtare loaded with their
initial values.

If the NMT serviceReset_Communicatios used to change the state of a node,
then communication parameters in the CANopen staekeset exclusively.

No communication via PDO and SDO is possible if degice is InSTOPPED
state. Only NMT services, Node Guarding, Life Guagdas well as Heartbeat are
possible in this state.

1.3.1.2 Node Guarding

Node Guarding represents a means of node supervisai is initiated by the
NMT master. This service is used to request theeisodperational state and to
determine whether the node is functioning corredilye NMT master transmits a
single Node Guard message to the slave in the &@remremote frame with the
CAN identifier 0x700 plus the node address of thdTNslave. As a response to
this remote frame, the NMT slave sends a CAN mesdsmgk containing its
current NMT state and a one bit that toggles betvie® subsequent messages.

Identifier DLC |[Data
0

0x700 + Node Address 1 Status Byte
Figure 13: Response of the NMT slave to a Node @dngremote frame

36 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

Status Byte Node State

0x00 (BOOTUP)

0x04 STOPPED

0x05 OPERATIONAL
OX7F PRE-OPERATIONAL

Table 10: Node state of a CANopen device

Bit 7 of the status byte always starts with a 0 ahdnges its value after each
transmission. The application is responsible fdivaty toggling this bit. This
ensures that the Node Guard response message fstameais not just stored in
one of the Full-CAN channels. Thus the NMT mastdl get the confirmation
from the NMT slave node that the application i aiihning.

1.3.1.3 Life Guarding

As an alternative to Node Guarding node supervis@m also be performed by
Life Guarding services. In contrast to the Node @iy the NMT master
cyclically sends a Life Guard message to the siawhe form of a remote frame
with the CAN identifier Ox700 plus the node addre$§she NMT slave. As a
response to this remote frame, the NMT slave sendSAN message back
containing its current NMT state and a one bit thaggles between two
subsequent messages. The NMT masters applicatiofiorsned if an answer is
missing or in the event of an unexpected statugh&umore, the slave can detect
the loss of the masters. The Life Guarding is sthwith the transmission of the
first Life Guard message of the masters.

Identifier DLC Data
0

0x700 + Node Address 1 Status Byte
Figure 14: Response from the NMT Slave to a Lifar@ng remote frame

Meaning of the status byte corresponds to thathefNode Guarding message
(refer toTable 10).

The Life Guarding supervision on the NMT slave nxldeactivated, if the Life
Guard time (object entry 0x100C in the object dicéiry) or the Life time factor
(object entry 0x100D in the object dictionary) egal to zero.

© SYS TEC electronic GmbH 2006 L-1020e_12 37

CANopen Software

1.3.1.4 Heartbeat

Heartbeat is a supervisory service for which no NMiBster is necessary.
Heartbeat is not based on remote frames, but dam¥ waccording to the
Producer-Consumer model.

1.3.1.5 Heartbeat Producer

The Heartbeat producer cyclically sends a Heartleessage. Théroducer
Heartbeat Time(16-bit — value in ms), configured at object diciry index
0x1017, will be used as cycle time between two sgbsent Heartbeat messages.
As COB-ID 0x700 plus node address is used. The fiyge of the Heartbeat
message contains the node status of the Hearthoehtqer.

Identifier DLC Data
0

0x700 + Node Address 1 Status Byte
Figure 15: Heartbeat message

Meaning of the status byte corresponds to thathefNode Guarding message
(refer to Figure 13.

In contrast to the Node and/or Life Guarding, bibf7the status byte does not
change after each transmission. It always contdiasvalue 0. This is also not
necessary here, because a Full CAN controller darsemd this message
automatically, since this protocol is not based remote frames. It is the
application’s task to initiate the transmissiortted Heartbeat message.

Setting the producer Heartbeat time (entry 0x1Q1iZhe object dictionary) to
Zero disables the Heartbeat producer.

38 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

1.3.1.6 Heartbeat Consumer

The Heartbeat consumer analyzes Heartbeat messagesom the producer. In
order to monitor the producer, the consumer requeeery producer’'s node
number, as well as the consumer Heartbeat time.

The information is stored in the Object Dictionaty entry 0x1016. For every
monitored producer, there is a corresponding suy-ehat contains the node
number of the producer and the Consumer Heartbes. T

Bit 31..24 23...16 15...0

Value | Ox00 Node number Consumer Heartbeat Time
Table 11: Heartbeat consumer configuration

The consumer is activated when a Heartbeat medsagdeen received and a
corresponding entry is configured in the OD (valli#ferent from 0). If the
Heartbeat time configured for a producer expireghout receipt of a
corresponding Heartbeat message, then the constgperts an event to the
application.

The Heartbeat consumer is completely deactivateehvwhe consumer Heartbeat
time is given a value of 0.

© SYS TEC electronic GmbH 2006 L-1020e_12 39

CANopen Software

1.4 CANopen Communication Profile

The CiA DS-301 [4] CANopen communication profilefides the communication
parameter for communication objects that must mperied by each CANopen
device for this class. Beyond the communicationfilerasupplemental device-
specific CANopen frameworks and device profilesarailable.

The following CANopen frameworks have been releasedy the CiA
(selection):

- Framework for programmable CANopen devices (CiA E3BR)

- Framework for safety-relevant data transmissio\(B5P-304)

The following CANopen device profiles are available
- Device profile for input/output modules (CiA DSP3Q7]
- Device profile for drive controls (CiA DSP-402)
- Device profile for display and terminal devicesA@SP-403)
- Device profile for sensors and data acquisition nhesl (CiA DSP-404)
- Device profile for SPS according to IEC 61131-2XCiISP-405)
- Device profile for encoder (CiA DSP-406)
- Device profile for proportional valves (CiA DSP-408

CAN identifier of a COB, inhibit times and transsisn type of a PDO, amongst
others, are considered communication parameteesc@immunication parameters
are part of the object dictionary and they candslrfrom and, if the applicable
access rights are granted, be written to by the ajgglication. Some parameters
are explained isectionl1.2, while information on other parameters canded

in the previously discussed CANopen frameworks@dawdce profiles.

40 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

1.5 Transmission Protocols

Transmission of communication objects is defined tlansmission protocols.
These protocols are also described in the CiA DBGBANopen communication
profile and are not a topic of this manual.

It should be noted, however, that the range of rdaizable protocols can be
limited. This saves resources for code and dagation 2.1ldescribes how this
resource reduction can be achieved.

1.6 Object Dictionary

The object dictionary (OD) is the connecting eletstween the application and
communication on the CAN bus, enabling data exchdngm the application
over the CAN network. CANopen defines services emdmunication objects for
accessing the object dictionary. Each entry is eglrd via index and sub-index.
The properties of an OD entry are defined by a t{ipNT8, UIN16, REAL32,
visible string, and attributes (read-only, writehg const, read-write, mappable).

The maximum number of OD index entries is 65,538wken 0 and 255 sub-
index entries are possible for each (main) indegek entries are pre-defined by
the applicable communication profile or device pepfrespectively. Type and

attributes for available sub-index entries withimain index may vary.

Index Sub-index | Type Attribute
0x2000 |0 UINT8 const
1 UINT32 read-write
2
3

Table 12: Structure of an Object Dictionary entry

Default values can be assigned to individual esitfide value of an entry can be
changed with the help of SDO communication if tttalaute assigned to the entry
allows such access (read-write and write-only; possible for read-only and
const). The value can also be changed by the apipircitself it the attributes for
the entry are read-write, write-only and read-dnigt possible for const).

The OD is further divided in sections. The sectoth index 0x1000 — OX1FFF is

used for definition of parameters for the commutcaobjects and the storage of
common information, such as manufacturer name cdaype, serial number etc.
Entries from index 0x2000 to Ox5FFF are reserved storing manufacturer-

specific values. Device-specific entries, as defir®ey the device profile or

frameworks, follow at index 0x6000 and higher.

© SYS TEC electronic GmbH 2006 L-1020e_12 41

CANopen Software

CiA DS-301 defines several mandatory entries tla@heCANopen device must
always possess. These entries are marked as manddiese mandatory entries
are supplemented by entries defined in the correfipg device profile.

The creation of an object dictionary is the subjefcn additional manual (L-
number L-1024) provided by SYS TEC. Creation ofodect dictionary from an
EDS @ectronicdatasheet) is supported by the OD-Builédé¢refer to manual L-
1022).

1.7 Error Handling and Reporting

Various mechanisms are provided in CANopen to regwor events:

* Emergency object This is a high-priority, 8-byte message that eord the
error informationRefer to sectiod.2.3for detailed description.

» Error register: This is a 1-byte object dictionary entry at ind&x1001. This
entry is provided to report the presence of anremnal its type.

* Pre-defined error field: This is an error list which is stored in the abje
dictionary at index 0x1003. This list contains #mergency error code as well
as device-specific information. The structure a$ st shows the most recent
error at sub-index 1.

1. OD-Builder is a product developed by SYS TEC &t@tc GmbH.

42 © SYS TEC electronic GmbH 2006 L-1020e_12

Fundamentals

1.8 Telegram Table (Predefined Connection Set)

CANopen defines default COB IDs (CAN identifier) rfasimple network
configuration with one master node and up to 12¥esInodes. These default
COB IDs depend on the service and the node nunfitieccorresponding slave
device. A function code has been defined for eathice. The resulting COB ID
Is based on the function code and the node number

COB Identifier (CAN ldentifier)
10 9 8 7 6 5 4 3 2 1 0

Function Code Node Number

1 The node number can be assigned locally or wighhtdp of LSS services over the CAN bus.

© SYS TEC electronic GmbH 2006 L-1020e_12 43

CANopen Software

Object |quncfion |NO9® oD |Object Dictionary Index
Broadcast messages

NMT 0000 - 0 -

SYNC 0001 - 0x80 0x1005, 0x1006, 0x1007
TIME 0010 - 0x100 0x1012, 0x1013
STAMP

Point-to-point messages

Emergency 0001 1-127 0x81-0xFF 0x1014, 0x1015
TPDO1 0011 1-127 0x181-0x1FF 0x1800
RPDO1 0100 1-127 0x201-0x27F 0x1400

TPDO2 0101 1-127 0x281-0x2FF 0x1801

RPDO2 0110 1-127 0x301-0x37F 0x1401
TPDO3 0111 1-127 0x381-0x3FF 0x1802
RPDO3 1000 1-127 0x401-0x47F 0x1402
TPDO4 1001 1-127 0x481-0x4FF 0x1803
RPDO4 1010 1-127 0x501-0x57F 0x1403

Default 1011 1-127 0x581-0x5FF 0x1200

SDO (tx)

Default 1100 1-127 0x601-0x67F 0x1200

SDO (rx)

NMT Error | 1110 1-127 0x701-0x77F 0x1016, 0x1017
Control

Table 13: Pre-defined Master/Slave Connection et [

44

© SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

2 CANopen User Layer

The following section describes the data structaed API functions of the
SYS TEC electronic GmbHpecific implementation of the CANopen standard
CiA DS-301. Support for additional CANopen standaisl also implemented or
prepared. In addition hardware and compiler spectiiaracteristics are taken into
consideration as well. The API offers interfacest ttan be used for expansion of
device specific properties. The experience of SEE Engineers in integrating or
porting the CANopen stack in various customer ajapilbns has contributed to an
expansion of the standard as well. Therefore awations from the CANopen
standard are especially identified as such. Desigrgtion and configuration of an
Object Dictionary is described in a separate maraédr to L-1024)

2.1 Software Structure

Before the individual API functions can be explainea description of the

software structure and the file structure is nemgssThis provides a foundation
for finding your way in later implementation. Agae, the CANopen stack has a
divided structure for application specific and haade specific modules.

The CANopen stack is divided up into individual mtes. With the definition of
modules, the CANopen stack's parameters (functawarpeters, data parameters)
were structured so as to be scalable. A porticdh@imodules are to be considered
as core modules and are a mandatory componeneiC&Nopen stack. Other
modules are not required for setting tasks. Thigrsemostly to CANopen
functions, which according to the CANopen standaeth be implemented
optionally or as an alternative to other functions.

In order to leave out individual modules withoutrg@ications, there can be no
lateral function call to another module within theodularized software layer,
rather only to modules positioned above or belasva(&allback functiord)

The application specific layer "CANopen controllif@€CM Module) controls the
interaction of the individual modules. The CCM Iay® not absolutely necessary
for implementation in the application.However ibpides a convenient interface
for use of multiple CANopen instances and encapssiisequential function calls
of multiple API functions (i.e. initialization, deition of PDOS) in functions.

The hardware specific layer encapsulates the dpgc@perties of a CAN
controller or microcontroller. Porting to new ham is simplified thereby and
can be reduced to an exchange of the transceivendoCAN controller and the
microcontroller specific initialization.

1. with this it is possible to not include certairdules or services when creating a CANopen
application without getting error messages fromlitieer about unreferenced functions.

© SYS TEC electronic GmbH 2006 L-1020e_12 45

14

900¢ HQWD 21U0NI3I8 DF1 SAS ©

2T 2020T-1

:9T ainbi4

M3INIBAO 9iN)oNnis alem)jos

Applikation
CCM CCMXxx
CCMMain Ccm Cem Cem Cem Cem Cem Cem Cem Cem Cem
DfPdo Obj Lgs Store Nmtm Sync Emcc Emcp Hbc Hbp | === ===
Instanztabelle
Instanztabelle
PDO SDOS SDOC LSSS EMCC EMCP NMTS/NMTM HBC HBP
NMT
OBD
coB
CDRV

Applikation

CCM-Schicht

CANopen-Stack

CAN-Treiber-Schicht

Verzeichnisstruktur

\CCM

\COPstack

\CDRV

aremyos uadoNyD

User Layer

2.1.1 CANopen Stack

The CANopen stack is portable; this means it islemgnted independent from
any hardware or application specific environment.

CcOB The COB layer provides services for transmissibcommunication
objects and therefore serves as a base layessthequired in any of
the configuration variants.

OBD The OBD module provides the global data stnectar all CANopen
instances. All data structures, that are configeraly the user, are
created in this module. This includes the objectiainary as well as
tables for managing PDOs and SDO Server and Clients

NMT This module creates the NMT state machine adld the Callback
function for the NMT state change in the CCM module

NMTS | This module provides services for Node Guaydlife Guarding and
Boot-up as NMT slave. It is not possible to usehbdMTS and
NMTM at the same time within one CANopen instance.

NMTM | This module provides services for Node Guagdibife Guarding and
Boot-up as NMT master. It is not possible to usen M TM and
NMTS at the same time within one CANopen instance.

HBP This module provides services for a Heartbeadlycer. It is possible
to have a Heartbeat Producer and a Consumer bistimgpat the sam
time in one CANopen instance. It is not possibladbvate both
Heartbeat and Life Guarding at the same time femjilien node.

(4%

HBC This module provides services for a Heartbeatsomer. It is possiblé
to have a Heartbeat Producer and a Consumer bistimepat the sam
time in one CANopen instance. It is not possibladtvate both
Heartbeat and Life Guarding at the same time femjilien node.

D

4%

PDO This module provides services to define anustrat PDOSs. In
addition, services for Sync Producer and Consumgegenerated here
as well.

PDOSTC This module provides the same services as the PBdule but
implements a static PDO mapping.

SDOS This module provides services to manage SD@efeand service
data objects (SDO) as well as the protocols forsmassion of servic
data objects as server. The supported protocofe(ited, segmente
block) are configurable.

oo

© SYS TEC electronic GmbH 2006 L-1020e_12 a7

CANopen Software

SDOC | This module provides services to manage SDénhtSland service data
objects (SDO) as well as the protocols for transmisof service data
objects as clients. The supported protocols (expedsegmented,
block) are configurable.

LSSSLV | This module provides services for configumaof bit timing and
module ID for a LSS slave.

LSSMST| This module provides services for configuratiorbftiming and
module ID for a LSS master.

EMCC | This module provides services for an Emergerarysumer. It is
possible to have an Emergency producer and consomtieiexisting at
the same time in one CANopen instance.

EMCP | This module provides services for an Emerggmogucer. It is
possible to have an Emergency producer and consootieiexisting at
the same time in one CANopen instance.

Table 14: CANopen Stack structure

2.1.2 CDRYV - Hardware-Specific Layer

The CDRV modules make a single interface availablthe CANopen stack for
various CAN controllers. The special properties gpeculiarities” of the CAN
controllers are thus taken into account in the CD&Wer. Porting to a new
hardware platform is enabled by creating or adgptie CDRYV driver.

The CDRYV drivers are instanceable. This solutiooobges interesting for targets
with multiple CAN controllers. There multiple CANep interfaces can be created
in order to serve multiple CANopen networks fronmsiagle application. The
implementation of multi-channel CAN cards on the BGch as pcNetCAN, PCI-
CAN or USB-CANmodul) is then possible.

When creating/configuring the CANopen stack, thBowing cases should be
taken into consideration:

* The target supports various CAN controllers (e.gcrocontroller C167CR
with integrated CAN controller and an external Cadhtroller SJA1000). A
hardware driver is required for each CAN controll®ne instance exists for
each hardware driver.

* The target supports N CAN controller (e.g. C1670th wvo integrated CAN
controllers). However, a hardware driver with Ntarees is required for the
CAN controller.

Section2.11 describes the settings for the selection amtfiguration of the
hardware drivers. For additional information on tBBRV Modulerefer to L—
1023 "CAN Driver Software Manual"

48 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

2.1.3 CCM - Application-specific Layer

The application specific layer "CANopen Controllibgodule” (CCM Module)
controls the interaction of the individual moduleBhe CCM layer is not
absolutely necessary for implementation in the iappbn.However, it provides a
convenient interface for use of multiple CANoperstamces and encapsulates
sequential function calls of multiple API functiofi. initialization, definition of
PDOSs) in functions.

The CCM layer contains a series of small functiozdaies. When the application
is created, the user can attach suitable modules@rthem as models for their
own expansions to the CCM layer. These expansiansetfect the reaction to

certain events, which could occur during a CANopeatess. In any case, it is not
necessary that the entire set of modules be atlaoha&n applicatiori.

Module Description Functions

CcmMain.c | This module contains the glopaCcmInitCANopen

initializing and process functions

for CANopen as well as ifje CCMShutDownCANopen
response to important eventscmDefineVarTab
(state change of the NMT stateccmconnectiToNet
machine, transmission errors,
state) - CcmProcess

- CcmCbNmtEvent

- CcmCbErrorEvent

CcmObj.c This module contains functigasCcmWriteObject
for accessing the ObjeC-thmReadObject
dictionary.

CcmDfPdo.c| This module contains a functiel€cmDefinePdoTab
for defining the PDOs via a table.

1. The way of not using software modules that arerequired for a specific applications is
partially supported by the linkers. This means #hammodule can be included within an IDE
project but will not be included in the linking mess when no function call to this module is
performed.

© SYS TEC electronic GmbH 2006 L-1020e_12 49

CANopen Software

CcmStore.c

This module defines functions
storing object data from the obje
dictionary in
memory.

D
the non-volatile

fo€cminitStore
¢lcemstoreCheckArchivState
- CcmChbStore

- CcmCbRestore

- CcmCbStoreLoadObject

CcmSync.c

This module defines functions

the SYNC consumer. It suppor'gsC

the SYNC configuration.

fo€cminitSync
cmConfigSync
- CcmCbSync

CcmEmcc.c

This module defines functions

the Emergency consumer.
supports the creation of a |
containing CANopen devices
be minitored.

fo€cmlInitEmcc
S—'thm EmccDefineProducerTahb
toCcmCbEmccEvent

CcmEmcp.c

This module suppo
configuration of the Emergen

producer. It provides a function fto

erase the Predefined Error Field

rtsCcmConfigEmcp

:yCcmSenEmergency

—

- CcmClearPreDefinedErrorField

- CcmCbEmcpEvent

CcmHbc.c

This module defines functions
the Heartbeat consumer.

supports the creation of a |
containing CANopen devices
be monitored.

foCcminitHbc
S—'ECcmHbcDefineProducerTab
toCcmCbHbcEvent

- CcmCbEmcpEvent

CcmHbp.c

This module suppo
configuration of the Heartbe
producer.

rtsCcmConfigHbp
at

Ccm303.c

This module defines functig
needed for indicating the intern
states of the CANopen devig
Two LEDs display the sta
information according to th

RELcm303Initindicators
\2'Ccm303ProcessIndicators
te Ccm303SetRunState

€ Ccm303SetErrorState

CiA303 standard.

50

© SYS TEC electronic GmbH 2006

L-1020e_12

User Layer

CcmlLss.c This module provides functiong- CcmLssmSwitchMode
for implementing the LSS maste
service. The module also contai
the callback function of the LSS| - CcmLssminquireldentity

slave service. - CcmLssmldentifySlave

'rESCcm LssmConfigureSlave

- CcmCbLssmEvent
- CcmCbLsssEvent

Table 15: CCM Layer files

This list gives the names of a few important fileshe CCM layer. The CCM
layer contents is expanded constantly and canftrer@ot be considered to be
complete. The description of functions, parametard implementation can be
found in the applicable CCM module.

© SYS TEC electronic GmbH 2006 L-1020e_12 51

CANopen Software

2.2 Directory Structure

Where to find which files?

Folder Contents

\Doku CANopen documentation

\Include This folder contains all interface filies CANopen.
The files global.h, cop.h must be included in the
application.

\CCM Files of the CCM layer.

\COPstack Files of the CANopen stack.

\CDRV Files of the hardware-specific layer.

\Objdicts This folder contains predefined object dictionafier

different device profiles. Each object dictionary
consist of 3 files that belong together; objdict.c,
objdict.h and obdcfg.h. These files can be
automatically created with the help of the ODBuilde
tooll. The selection of the object dictionary oscur
by defining the applicable include path within the
project settings. In addition the following subfetd
contain the corresponding EDS file and the project
file for the ODBuilder.

\DSP401_3P Object dictionary for DSP-401 with 3 RRand 3
TPDOs, NMT slave

\DSP401 7P Object dictionary for DSP-401 with 7 R®and 7
TPDOs, NMT slave

\O401P3M Object dictionary for DSP-401 with 3 RPD&sl 3
TPDOs, NMT master

\O401P7M Object dictionary for DSP-401 with 7 RPD&sl 7

TPDOs

\DS401_4PST Object dictionary for DSP-401 static PDO mapping,

C

NMT slave

\DSPManf

Object dictionary for a manufacturer-speabdbject
dictionary.

1. The ODBuilder tool supports the generation ofadfect dictionary based on an EDS file.
The user can also define entries in the OD. The QIDBr creates a new EDS file as well as
the C and header files necessary to create the PAMNdata structures.

52

© SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

\Target This folder contains hardware-specific files (&tpr
files) for different targets (subfolders) requiréat
proper initialization.

\DK16 543 Files for Fujitsu Devkit16 with F543 CPU

\PC167 Files for phyCORE-167

\KC167 Files for KitCON-167

\KC505 Files for KitCON-505

\KC515 Files for KitCON-515

linux Files for linux

\PC565 Dateien fur phyCORE-565 (Motorola MPC 565)
\Projects This folder contains the project folders for vaso

example applications. One configuration file
(copcfg.h) is provided for each project. This file
defines the supported hardware, the supported
properties and protocols.

\Inf_16x_100 Example project for Infineon 16x with external

0 SJA1000

\Fuj_543 Example project for Fujitsu MBO90OF543 withernal
CAN controller

\Inf_505 Example project for Infineon 505 with imal CAN
controller

\Inf_515 Example project for Infineon 515 with imeal CAN
controller

The include files have been linked to the C filathaut any path indication. In

order to guarantee an error free compilation, @ pnust be defined to point to
the include folder and the Object Dictionary foe thompiler or for the IDE

project.

© SYS TEC electronic GmbH 2006 L-1020e_12 53

CANopen Software

2.3 Data Structures

In the following section there are explanations tfug data structures. There are
data structures that are used for data exchangeeéetthe application and
CANopen. Other data structures are used for managerand control of
processing cycles, functions or protocols withimadule, and are only mentioned
to provide a complete listing.

The following data structures are used as applicath interfaces:

Each CANopen instanédas its ownObject Dictionary (OD). The Object
Dictionary is the coupling element between the igpfibn and the
communication layer and contains all CANopen dewega. Entries in the
Object Dictionary are addressed over index andisdéx. Entries can be read
or written over the CAN bus with the help of seevitata objects (SDQ@efer

to sectionl1.2.2) or through the application with the help ARl functions
(refer to section®.7.4and 2.8.%. With the help of the OBD module's API
functions, the address and size of an entry catebermined, whereby access
to the object entry data is possible via pointeefe¢ to section 2.8)5 OD
entries can also be linked with application fields variables. This is
advantageous in that access to data is possibleowtitusing one of the
CANopen stack's or a pointer's API functions. Tnaission per SDO or
access with the help of API functions is not lidithereby. Due to versatility
in application and the alterability of these erdtileey are defined as Var entry
(variable object entry).

As mentioned above, these Var entries can be emsbeiddPDOs; under the
condition that mapping of the entries with the ibttre kObdAccPdo is
allowed.

In order to register a fast and simple modificatmina variable with the
application, a variable callback function that ud#s an argument pointer can
be provided when defining Var-Entries. Modificatiafi an entry over the
CAN bus via a PDO results in the call of the retipecPDO callback
function, whereby the argument pointer is givethasparameter.

The CANopen stack and the hardware drivers astamteable. This means that the
functional contents of CANopen can be utilized everal data instances. This makes it
possible to use various independent CANopen intesfan the same target (e.g. device with
more than one CAN controller).

54

© SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

The Object Dictionary is organized as a table. Hable entry corresponds to
an index. This index table is located in the ROMthid an index there are
additional tables with an entry for each sub-indexe sub-index table can be
stored in either the ROM or the RAM. The designtloé table has been
optimized for access speed and memory space reggnits. Creation of an
Object Dictionary is supported with the help of mwac It can be created
manually or by help of the ODBuilder tool.

An entry for a sub-index contains the type of thgedt Dictionary, right of
access, start value, range values and the datéepoin the case of a static
Object Dictionary, the management structure for @lgect Dictionary is
created during compilation.

Modification of the table during runtime is not gdde. Therefore any later
use of an entry must be known about ahead of timthe case of a dynamic
OD, the management structures of the Object Diatiprare created during
runtime.

The application's variables and fields, which arebé transmitted with the
help of PDOs or which were declared as DOMAIN aings, have to be
registered in the Object Dictionary Var enttieShe CCM layer makes the
function CcmDefineVarTab available for this purposdich automates this
procedure with the help of tables.

Structures are used for transferring complex parameters twtfons. The
structures are explained as function parametetsr Ry a function call, a
structure of this kind must be initialized.

Structures and tables for the management of internlacycles and settings:

- For the management of PDOs, SDO server, SDO clieninternal tables
are used. The size of the tables (i.e. number tfesj is based on the
defined number of PDOs, SDO servers etefef to section2.11). The
tables are created with the compiler when compilitng Object
Dictionary. In order to conserve memory resouraed jprocessing time,
individual entries fro the tables are connect diyewith the entries of the
Object Dictionary. The tables are initialized witte initialization function
of the relevant module.

- Each module contains a global instance table. mk&mce table contains
all of the variables for module. The variables ased to store processing
states and parameters within a module. Excepinftihe case of the CCM
module, an instance table is only valid within adule and is therefore

1

When creating the Object Dictionary the dataditmes for for managing the variables are
created but NOT the memory (this means the variabthe field) for storing the data.

© SYS TEC electronic GmbH 2006 L-1020e_12 55

CANopen Software

declared to be "static". Creation and modificatadrentries for a table is
supported by macrosefer to sectior2.5).

56 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

Application i CANopen API CAN Bus

! Object Dictionary
[}
[}
i Index | Subindex| Entry
! CcmWriteObject 0x2000 |0 UINT8

e . — > , ;
' p Obdvy?tzEntrg bind 1 UINT8 Parameter: Index, Subindex
! arameter: Index, Subindex 2 UINT16
i 3 UINT16
[}

oat Read | ComReadoblect 0x2010 |0 UINTS Write SDO Download

Ll «— . :
L p e Ind Syb' dex € 1 REAL32 Parameter: Index, Subindex
i arameter: index, subindex 2 DOMAIN
[}
[} .

Write Read i CcmbDefinevarTab 0x6000 10 UINTS Write and Read with
| ObdDefineVar = L LTS the help 0fSDO
! Parameter: Index, Subindex 2 UINTS8
i T i Pointer, Size, Callback-
BYTE Define ' . Function, Pointer to Callback- Transmit with the

— >

|~ Parameter help ofPDOs

Figure 17: Data exchange between application angaldictionary

© SYS TEC electronic GmbH 2006 L-1020e_12 57

CANopen Software

2.4 Object Dictionary

The Object Dictionary is defined in three fileljdict.c, objdict.h andobdcfg.h
An exact description for the Object Dictionary drea is given in manual
L-1024

CANopen software comes in three standard variamtsese variants are listed in
the following sections. In the listing of objectehbreviations are used for the
object type, the data type and for the attribuidsese abbreviations have the
following meanings:

Object Types:
var Object contains a value that can be accesse&pe or
from the application (variable).
Data Types:
u8 Unsigned 8-bit
ulé Unsigned 16-bit
u32 Unsigned 32-bit
I8 Integer 8-bit
i16 Integer 16-bit
132 Integer 32-bit
vstr Visible String
Attribute:
ro read only; object can be read per SDO and reaaritten
from the application.
rw read write; object can be read or written pelOS@r from
the application.
WO write only; only a write to the object is podsilper SDO or
from the application.
const constant; object can only be read and ndtenrper SDO
or from the application.
mapp object can be mapped to a PDO
store object can be saved in non-volatile memawefe(to

section2.7.6)

58 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

2.4.1 Obiject Dictionary for Standard 1/0 Devices

There are several Object Dictionaries availablestandard 1/0 devices. The OD
ds401_3pcontains 3 TPDOs and 3 RPDOs; the @201 _7pcontains 7 TPDOs
and 7 RPDOs. Otherwise the two Object Dictionasiessthe same in terms of all
other objects. The ObB401p3mhas 3 TPDOs and 3 RPDOs, but as a CANopen
Master it does not contain the objects 0x100C aiid0D. Instead it contains the
supplemental objects 0x1016 (for the Heartbeat Qmes) and 0x1280 (for the
first SDO Client).0401p7mresemble®401p3m except that it has 7 TPDOs and
7 RPDOs. The CANopen Kits have two ODs availabl#hem,0401p2ks(for the
Slave) and401p2km(for the Master). Both of these contain only 2 TFDand 2
RPDOs and the Master is not equipped with a Heatrt@onsumer (Object
0x1016 is absent).

Index |Sub- |Name Object |Data |Attribute | Default
index Type Type Value
0x1000 device type var u32 ro 0x000F-
0191
0x1001 error register var u8 ro 0
0x1003 predefined error field | array
0 number of errors var u8 ro, rw;| 0
write O
to erease
1...4 | standard error field var u3?2 ro 0
0x1005 COB-ID SYNC var u3?2 rw, store 0x080
0x1006 communication cycle|var u32 rw, storg 0
period
0x1007 synchronous window| var u32 rw, storg O
length
0x1008 manufacturer device | var vstr const “CANoper
name Slave”
0x1009 manufacturer hardwarear vstr const “V1.00”
version
0x100A manufacturer softwarevar Vstr const “V5.xx"
version
0x100C guard time var ulé rw, store 0O
23

23: Not present in the ODs for the Master 0401p3401@7m and 0401p2km.

© SYS TEC electronic GmbH 2006 L-1020e_12 59

CANopen Software

Index | Sub- |Name Object |Data |Attribute |Default
index Type Type Value
0x100D life time factor var u8 rw, store, 0O
1
0x1010 store parameters array
0 largest sub-indepvar u8 const 3
supported
save all parameters var u32 rw 0
2 save communicatigivar u32 rw 0
parameters
3 save applicatioyvar u32 rw 0
parameters
0x1011 restore defaultarray
parameters
0 largest sub-indepvar u8 const 3
supported
1 restore all defaulwvar u32 rw 0
parameters
2 restore communicatignar u32 rw 0
default parameters
3 restore applicatiopvar u32 rw 0
default parameters
0x1012 COB-ID time stampvar u32 rw, store| 0x100
message
0x1014 COB-ID emergencyvar u32 rw, store| 0x8000
message 0000
0x1015 inhibit time EMCY var ulé rw, store| O
0x1016 consumer heartbegrray
24 time 2.4.2
0 number of entries var u8 const 5
1..5 | consumer heartbeatr u32 rw 0
time
0x1017 producer Heartbeavar ulé rw, store| O
time
24 Only present in the ODs for the Master 0401p3wh @401p7m.
60 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer
Index |Sub- |Name Object |Data |Attribute |Default
index Type Type Value
0x1018 identity object record
0 number of entries var u8 const 4
1 vendor ID var u32 ro Ox3F
2 product code var u32 ro 0
3 revision number var u32 ro Ox0AO0b
4 serial number var u32 ro 1
0x1280 client SDO parameter| record
25 0 number of entries var u8 const 3
COB-ID client tgvar u32 rw, store| 0x8000
server 0000
2 COB-ID server tovar u32 rw, store| 0x8000
client 0000
3 node ID server var us8 rw, store 0x00
0x1400 receive PDO parameterecord
0 largest sub-indepvar u8 ro 5
supported
1 COB-ID used by PDQ var u32 rw, store 0x80Q0-
0000
transfer type var u8 rw, store¢ 255
inhibit time var ulé rw, store, O
event timer var ulé rw, store 0O
Ox14xx
0x1600 receive PDO mapping record
0 number of mappedar u8 rw, store| 0
application objects in
PDO
1..8 | PDO mapping for thevar u32 rw, store| O
n-th application object
to be mapped
Ox16xx
25, Only present in the ODs for the Master 0401p8491p7m and 0401p2km.
© SYS TEC electronic GmbH 2006 L-1020e_12 61

CANopen Software

Index |Sub- |Name Object |Data |Attribute |Default
index Type Type Value
0x1800 transfer PDQrecord
parameter
0 largest sub-indexsupvar u8 ro 5
index supported
1 COB-ID used by PDQ var u32 rw, store 0x80Q0-
0000
transfer type var u8 rw, store¢ 255
inhibit time var ul6 rw, storef, 0O
event timer var ul6 rw, store 0
0x18xx
0x1A00 transfer PDO mapping record
0 number of mappedar u8 rw, store| 0O
application objects in
PDO
1..8 | PDO mapping for thevar u32 rw, store| O
n-th application object
to be mapped
Ox1AXX
0x6000 read input 8-bit array
0 number of inputs 8-bif var ud const 16
1..16 | read input var u8 ro, mapp O
0x6100 read input 16-bit array
26 0 number of inputs 16var u8 const 8
bit
1..8 | read input var ulé roomapp O
0x6200 write output 8-bit array
0 number of outputs Bvar u8 const 16
bit
1..16 | write output var ud rw, mapp O
26: Not present in the ODs for the CANopen Startiérok01p2ks and 0401p2km.
62 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer
Irele St(Jjb NErTE Object _I?ata Attribute Selfault
index Type ype alue
0x63001 write output 16-bit array
0 number of outputs 1l6var u8 const 8
bit
1..8 | write output var uleé rw, mapp O
0x6404 read analog input 16array
bit
0 number of analog inpuvar u8 const 4
16-bit
1..4 | analogue input var 116 ro,mapp O
0x6402 read analog input 32array
bit
0 number of analog inpuvar u8 const 4
32-hit
1..4 | analog input var 132 ro,mapp O
0x6414 write analog output 16array
bit
0 number of analogvar u8 const 4
output 16-bit
1..4 | analog output var 116 rw, mapp O
© SYS TEC electronic GmbH 2006 L-1020e_12 63

CANopen Software

Index |Sub- |Name Object |Data |Attribute |Default
index Type Type Value
0x6412 write analog output 32-array
bit
0 number of analog var u8 const 4
output 32-bit
1..4 | analog output var 132 rw, mapp O
0Ox6424 analog input interrupt | array
upper limit integer
0 number of analog var u8 const 4
inputs
1..4 | analog input var i32 rw, store 0
0x64251 analog input interrupt | array
lower limit integer
0 number of analog var u8 const 4
inputs
1..4 | analog input var 132 rw, store 0
Table 16: Object Dictionary for standard I/O desce
64 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

2.5 Instanceability of the CANopen Layer

The CANopen stack, the CCM module and the harddavers are instanceable.
This means that the function contents of CANopenlm&applied to multiple data
instances. This allows for support of multiple ipdadent CANopen interfaces on
one target.

To generate instances, all global and static vesalare stored in so called
instance tables. Each table entry corresponds lgxaca CANopen instance. An
entry is described by a structure. When calledfuihetions receive a reference to
the instance to be processed in the form of aranmest pointer or an instance
handle.

The number of instances and thereby the numbentdés in an instance table are
defined as constants during compilation. These teots are called
COP_MAX _INSTANCES for the CANopen and are definedhie filecopcfg.h
There is a separate define called CDRV_MAX_INSTANKC#or instancing the
CAN drivers, which is also defined in the fileefer to section 2.11)1Access to
the structure elements of an instance occurs axelysszia macros.

When defining multiple instances, if a functionlcatcurs, a reference to the
instance to be processed is always given as a p&ain the form of an address
to an instance tablagfer to section2.5.2) or instance handleefer to section

2.5.1). If only one instance was defined, then ffasameter is left out. In the
description of the API functions, this parameteil velways be listed. The

definition of the instance parameter is given witle help of macros. These
macros are deleted by the compiler's preprocesspentdling on the defined
number of instances.

Example:

If only one instance is used, then the followingtamce parameter should be

removed.
CcmConnectToNet ();

For multiple instances the instance parameter tmigiiven.
CcmConnectToNet (Handlelnstance0);

In the file instdef.h macros are defined for the declaration and trassion of
instance parameters to functions and for accesntides in an instance tables.
Use of these macros supports function writes, wiaich independent from the
number of instances. As a rule, the number of nt&s (CANopen interfaces) is
defined by the application.

© SYS TEC electronic GmbH 2006 L-1020e_12 65

CANopen Software

2.5.1 Using the Instance Handle
An instance handle is used as a reference to thientunstance if a CCM layer
function is called or if one of the application&lback functions is called.

If multiple instances are used in a CANopen appbea then the instance macros
have the following contents:

The macro ... corresponds to in the C Source

For declaration of parameters in a function's paraneter list:

CCM_DECL_INSTANCE_HDL tCoplnstanceHd| InstanceHandle

CCM_DECL_INSTANCE_HDL_ tCoplnstanceHd| InstanceHandle,

CCM_DECL_PTR_INSTANCE_HDL |tCoplnstanceHdl MEM*
plnstanceHandle

CCM_DECL_PTR_INSTANCE_HDL |tCoplnstanceHdl MEM*
plnstanceHandle,

For handing over parameters to the function to be alled:

CCM_INSTANCE_HDL InstanceHandle

CCM_INSTANCE_HDL _ InstanceHandle,

Table 17: Meaning of instance macros as handle

If only one instance is used then the instance osdtave no content.

66 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

2.5.2 Using Instance Pointers

An instance pointer is used as a reference touhermt instance if a function from
a deeper layer is called (i.e. SdosProcess funcadirihrough a function from the
CCM module).

If multiple instances are used in a CANopen appboa then the instance macros
have the following contents:

The macro ... corresponds to in the C Source

For declaration of parameters in a function's pataniist:

MCO_DECL INSTANCE PTR void MEM* pinstance

MCO DECL INSTANCE_PTR_ void MEM* pinstance,

MCO_DECL_PTR_INSTANCE_PTR/|void MEM* MEM* pinstancePtr

MCO_DECL_PTR_INSTANCE_PTR|void MEM* MEM* pinstancePtr,

For handing over parameters to the module's owctifum

MCO_INSTANCE_PTR plnstance
MCO_INSTANCE _PTR_ pInstance,
MCO_PTR_INSTANCE_PTR pInstancePtr
MCO_PTR_INSTANCE_PTR__ pInstancePtr,

For handing over parameters to functions not ingidemodule:

MCO_INSTANCE_PARAM|(par) par

MCO_INSTANCE_PARAM (par) par,

Table 18: Meaning of Instance Macros as Handle

If only one instance is used then the instance asatave no content.

© SYS TEC electronic GmbH 2006 L-1020e_12 67

CANopen Software

2.6 Hints for Creating an Application

When using the CANopen layer, it is important t@krwhich functions must be
executed in which operating state. This is crumabrder to attain the desired
functionality. Explanations of internal mechaniecglacycles aid in development
of an understanding of the chosen solution or imsitdtions. Furthermore,

explanations are given as to which tasks must denpeed by the user in order to
achieve the desired function.

To ensure the correct function of the CANopen prolkoa specific sequence must
be adhered to when executing the functions. Otlseniti is possible that data
structures won't be present or won't be initialjzetiereby a function call will
result in an error or undefined behaviar.

The sequence for execution of the various functisrt®upled with the individual
NMT state machine states. This procedure is adgantss in that the state can be
described in great detail. The NMT state machingefsned by the standard CiA
DS-301. There is a good deal of secondary liteeatwrailable with hints and
examples to help deepen your understanding.

This section provides a general description ofdinecture of an application. The
application is divided into numbered areas. Théowihg sections containing

descriptions of individual modules make referenteshese areas in order to
specify the positions that must be adapted foignattgon of the desired module or
CANopen services.

2.6.1 Selecting the Required Modules and Configuration

When creating a CANopen device, various CANopertions and properties are
required for object entries. When you acquire a @pé&h Library, the parameter
of supported services is defined and cannot be freddi However when
integrating the CANopen Code, the selection o¥ises is configurable and can
be adapted to application requirements.

Services are encapsulated in the modules within GAdNopen stack. The
following overview shows which module is requireg the respective CANopen
service. When using the source code, the requiredutes must be referenced
during code generation and the appropriate settimagge in fileCopCfg.h (refer
to section2.11). Modules that are listed as base modulesyslwave to be
referenced during code generation. Optional modea@sbe left out if the service
they support is not required.

27 When using the 'debug' version various verifmattests are performed and in case of an
error the corresponding PRINTF output will be geted.

68 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

baud rates

Service/Function Module Category
Initializing CANopen CcmMain.c| Mandatory module
Managing of PDOs Pdo.c or |optional

PdoStc.c
SDO Server SdosComm.Blandatory module
SDO Client Sdoc.c optional
CRC calculation for SDO block transfegdoCrc.c optional
Heartbeat producer Hbp.c optional
Heartbeat consumer Hbc.c optional
Emergency producer Emcp.c Mandatory module
Emergency consumer Emcp.c optional
Life Guarding Master Nmtm.c The module Nmtm.c
Life Guarding Slave Nmts.c and Nmis.c shogld

always be used in an

Node Guarding Master Nmtm.c |either-or fashion.
Node Guarding Slave Nmts.c
LSS Slave LssSlv.c optional
LSS Master LssMst.c optional
Creating communication objects for |Cob.c Mandatory module
message transmission
Functions for access to the object entri@bd.c Mandatory module
NMT state machine Nmt.c Mandatory module
Functions for accessing machine AmiXxx.c Mandatory module
specific data formats for the given
microcontroller "Xxx'
Driver for the applicable CAN CdrvXxx.c | Mandatory module
controller (Xxx) or operating system
Interface functions for adapting the | CciXxx.c Mandatory module
hardware-specific CAN controller
connections
Baud rate table containing the suppontBdiTabXxx.c| Mandatory module

Table 19:

Guide for selecting the required softwaredules

© SYS TEC electronic GmbH 2006

L-1020e_12

69

CANopen Software

Modules in the CCM layer are optional except fordme CcmMain.c. The
modules support the user during configuration efdpplication. The user has to
decide which modules to include. An Emergency peedus always supported,
even if this service is optional according to ttendard CiA DS-301. However,
practical application has shown that for diagnadisn error in an application,
this service must be used.

The amount of supported services and protocolsinvehmodule can be further
reduced refer to sectior.11). This is particularly interesting if verytldé code
and data memory is available on the target. Add#icsettings must be made in
the file CopCfg.h. The CANopen stack is implemented independentharmf
specific CAN controller. For connection of a CANntwller, the specific driver
moduleCdrvXxx.c and possibly another moduBziXxx.c must be included. The
module CciXxx.c is required if a stand alone controller can beneated to a
microcontroller in different way$8 Additional information is available in the
manual "CAN Drivers"I(-1023.

The baud rate table contains values for variousd bates for the baud rate
registers BTRO and BTR1. These values are calallétesed on the clock
frequency of the CAN controller and not the crysialoscillator frequency. The
clock frequency of the CAN controller is usuallytelenined by dividing or

multiplying the oscillator frequency of the CAN dawller or microcontroller.

2.6.2 Sequence of a CANopen application

A CANopen application has the following cycle inriple:
o Initializing the hardware

o Creating the data structure (Object Dictionary, I&ap Structures,
Variables, Instances) and linking the configureddmes configuration of
node numbers

o Initialization of services (communication paramster creating
communication objects)

0 Processing events and execution of service denfemdsthe application.
o Closing the CANopen layer, if necessary

28 Connection to an INTEL 82C527 CAN controller daa achieved via both serial or parallel
interface.

70 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

Initializing the hardware

Initializing the CANopen layer

v

Initializing the services and
communication objects

(. J

»

\ 4
4 N
- Processing of events in the
CANopen layer
Processing of service requests
from the application

\ J

yes

Shutting down CANopen layer:

Terminating services and
closing communication objects

Figure 18: Sequence of a typical CANopen applicatio

2.6.2.1 Initializing the Hardware

Before the CANopen layer is initialized, the hardevanust be initialized by the
application. To function correctly the CANopen rggs a time basis, generated
in 100us, as well as an interface in the debugiaerior the output of error
messages. If an error is discovered based on ayfawdnfiguration or
parameterization, then the CANopen layer will cdlindard C-function printf in
some cases. The output of the serial data streamtéominal may need to be
adapter for the target.

The global interrupt of the microcontroller is te lveleased, and the CAN
controller's service routine included (which invedvsetting the interrupt vector
and the interrupt priority). Upon delivery, targetfiles for various target
platforms are included with the CANopen Source Cddeere are functions in
these files for initialization of a timer, the s@rinterface as well as for release of
the global and CAN controller specific interrupt.

© SYS TEC electronic GmbH 2006 L-1020e_12 71

CANopen Software

Examples for the hardware initialization:
void main (void)

{

' /I disable global interrupt
TgtEnableGloballnterrupt (FALSE);

/I init target (timer, interrupts, ...)

Tatlnit (); I init general

TatlnitSerial (); [l init serial interface
TatlnitTimer (); /I init system time
TgtInitCanlsr (); // init CAN controller interrupt

/I enable global interrupt
TgtEnableGloballnterrupt (TRUE);

When using an operating system, the hardware isllysinitialized by the
operating system. Functions may be necessary fer itftialization of the
operating system.

2.6.2.2 Initializing the CANopen Layer and Creating the Data Structures

Each module in the CANopen stack or Cdrv layer (CAier CdrvXxx.c)
contains a function for the initialization and paeterization of the module. The
Init function must be executed for each instandes Btep is required in order to
correctly process additional functions within thedule.

The functionCcmInitCANopen executes the basic initialization of the CANopen
layer. The Init functions of the individual modulase called within this function.
This provides the conditions necessary to link @ppbn variables (i.e. for
storing process data) with the CANopen layer.

Example for initialization of the CANopen layer:

In the following example, initialization of the CAdgen layer of a CANopen
device is prepared and executed with an instankbe. nibde contains the node
number 1, a baud rate of 1 Mbit/s is selected. dibek speed for the controller is
10 MHz for a CPU frequency of 20 MHz. When selegtine baud rate table, it is
important to be sure that the listed clock freqyerefers to the clock frequency
of the CAN controller and not the oscillator frequg of the CAN controller or
the CPU. For microcontrollers with an integrated NCAontroller or for stand
alone CAN controllers, the clock speed can usuadydetermined by dividing or
multiplying the oscillator frequency.

72 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

#define NODE_ID 0x41 /I Node ID is 0x41

/I define index to baud rate table for 1 Mbit/sec
#define BAUDRATE kBdilMbaud

/I define the baud rate table for 10MHz CAN control ler clock
#define CDRV_BDI_TABLE awCdrvBdiTablel10

/I define base address of CAN-controller
#define CAN_BASE OxEFO00

An acceptance filtration is not provided. Each Chléntifier can receive. The
parameters are stored in a tCcminitParam structectared as "const”". The base
address of the CAN controller CAN_BASE is enteraud the structure
tCdrvHwParam. A function is defined (TgtEnableCaetruptl) through the
application, which inhibits or releases the CAN tcolter interrupt. A Callback
function AppCbNmtEvent) is defined for processing the state changes @f th
NMT state machine. The functidDbbdInitRam, for initialization of the internal
data structures, always has to be entered.

CONST tCcmlinitParam ROM CcminitDefaultParam_g =

{
NODE_ID, /I node id
BAUDRATE, /I index to baud rate
CDRV_BDI_TABLE, /I baud rate table
OxFFFFFFFFL, /I Acceptance Mask Register
0x00000000L, /I Acceptance Code Register
{{0}}, /I CAN controller address
TgtEnableCaninterruptl, /I function pointer to
/I enable CAN interrupt
AppCbNmtEvent, /l pointer to NMT-Callback
/I function
ObdInitRam // init function for OD
h

In this example all entries for the structure axed and cannot be changed during
runtime. Therefore the structure is stored in tH@MR If the node address or
baud rate has to be changed or configured withRadlitch during runtime, then
the structure must be stored in RAM, so that thériesn (m_bInitNodeld,
m_BaudIndex etc.) can be modified by the applicatio

By calling the function CcminitCANopen, the CANopkyer is initialized. The
first call of CcmiInitCANopen is always performed ti the parameter
kCcmFirstinstance. This causes the function totdeles internal instance table.

The Object Dictionary is created, the entries atiged with default values
(default values can be provided when the Objecti@mary is defined). However,
Object Dictionary entries are not linked to the laggtion.

© SYS TEC electronic GmbH 2006 L-1020e_12 73

CANopen Software

tCcminitParam MEM CcminitParam_g;

void main (void)

{

h /I enable global interrupt
TgtEnableGloballnterrupt (TRUE);

/I copy default values to RAM
CcminitParam_g = CcminitDefaultParam_g;

/I set address auf CAN-Controller 1 to tCdrvHwWP aram

/I (tCdrvHwParam is a UNION, therefore the addr ess cannot be

/I set as const by compiler it must set by user)

CcmlinitParam_g.m_HwParam.m_McloParam.m_pbBaseAd dr=
TgtGetCanBase (1);

/l'initialize first instance of CANopen
Ret = CcmInitCANopen (&CcmlnitParam_g,
kCcmFirstinstance);

if (Ret!=kCopSuccessful)
{

}

goto Exit;

Exit:

2.6.2.3 Node Number Configuration with LSS

When using the LSS service for configuring a nodmber, it is important to be
sure to execute the LSS state machine before smgticfrom NMT state
INITIALIZATION to PRE-OPERATIONAL, if the node numdr is invalid.

If the application still has no valid node numbdddlowing execution of
CcmiInitCANopen (according to LSS specification CiA DS-305 V1.0kFF is
defined as an invalid node number), then the fonaicmProcessLssInitState
must be called cyclically in a loop. CANopen wilaivuntil a valid node number
has been initialized via the LSS service beforegldhis. Once this has occurred,
then the function will return a value not equak@opLssinvalidNodelDNow the
cyclical loop can be ended admConnectToNetcan be called. The NMT state
machine is then started wibcmConnectToNet While this called is performed
the NMT Callback function within the application ¢alled with various events.
Information on what needs to be done within thesmnes is provided irsection
2.6.2.4.

74 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

Example:

Ret = CcmInitCANopen (&CcminitParam_g, CcmFirst Instance);
if (Ret!=kCopSuccessful)

{
}

goto Exit;

/I run LSS init state process until Nodeld is v alid
do

{

Ret = CcmProcessLsslInitState ();

} while (Ret == kCopLsssInvalidNodeld);

Ret = CcmConnectToNet ();
if (Ret!=kCopSuccessful)

{

}

If the node number is modified again during the licgt execution of
CcmProcess then a re-initialization of the CANopen layer Wile performed
automatically (in the CCM module). When this ocgurthe events
kNmtEvResetNode, kNmtEvRestCommunication and
KNmtEvVEnterPreOperational will be registered againthe NMT Callback
function of the application.

goto Exit;

© SYS TEC electronic GmbH 2006 L-1020e_12 75

CANopen Software

2.6.2.4 Initializing Services and Communication Objects, Swevice
Execution

In the previous step, the basic data structure® wezated and initialized. The
CANopen device contains a valid node number. Thp #tat follows now links
the application variables to the entries in thegdbpictionary and initializes the
services and communication objects for the datestea. Thus the functions to be
executed are assigned the states within the NM€& stachine.

After the functionCcminitCANopen has been executed, the CANopen device
will be in the NMT state machindNITIALIZING state.

/ Initialisation \

[Initialising < E)
(15)
v
[Reset Appliction %
"(16)
(
» Reset Communication]
NG /
(2
v <
L[Pre-Operational e
7'y 5)

13 3 (4)) 10
13) Stopped }L
(6)

v (®)

L[Operational J ©)

Figure 19: NMT state machine according to CiA DS-3@1.02

76 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

Event Command
(1) Power-on or hardware reset KNmtEVEnterInitinlis
(2) automatic change into PRE- | KNmtEVEnterPreOperational

OPERATIONAL state after
completion of INITIALISATION

(3), (6) | NMT command: KNmtEvEnterOperational
Start. Remote_Node

(4), (7) | NMT command:
Enter_Pre_Operational Node

(5), (8) | NMT command: kKNmtEvEnNterStopped
Stop_Remote_Node

(9), (10), | NMT command: kKNmtEvResetNode

(11) Reset _Node

(12), NMT command: KNmtEvPreResetCommunicatiorn

(13). (14) Reset_Communication kKNmtEvResetCommunication

kNmtEvPostResetCommunication

(15) automatic change into RESET- kNmtEvResetNode
APPLICATION state after
completion of INITIALIZING

(16) automatic change into RESET- kNmtEvPreResetCommunication
COMMUNICATION state after

RESET-APPLICATION finisheq 1 VResetCommunication

KNmtEvPostResetCommunication

Table 20: NMT state machine explanation (List @res and commands)

According to the standard CiA DS-301 the followseyvices are to be supported
in the various NMT states:

© SYS TEC electronic GmbH 2006 L-1020e_12 77

CANopen Software

Communi- [INITIALISING |PRE- OPERATIONAL | STOPPED
cation OPERATIONAL

object

PDO X

SDO X X

SYNC X X

Time Stamp X X

Emergency X X

Boot-Up X

NMT X X X

Table 21: Supported communication objects in vaiNMT states [4]

The functionCcmConnectToNetstarts the execution of the State machine with
the statdNITIALIZING. After a state has been closed, the state maehihghift

to the next state on its own until reaching theesRRE-OPERATIONALThe
function CcmConnectToNetwill then return. During execution of the indiviau
states respective events, the modules of the CANagack will be called
repeatedly over thExxNmtEvent function. Likewise a call will be performed for
the application's NMT Callback functioAppCbNmtEvent, if a function has
been parameterized (entry m_fpNmtEventCallback dfe t structure
tCcminitParam). When an NMT Callback function idled the NMT event is
given as a parameter (event will be handed ovpaeameterrefer to Table 2

The functionAppCbNmtEvent is called as the last function within the execution
sequence of an NMT state's XxxNmtEvent functiorilgwang previously set
standard values to be modified as needed for alicappn.

In the following examples the functioAppCbNmtEvent is called as the
application's NMT Callback function. The examples based on the condition
that only one instance was configured. When muatipstances are used then the
instance parameter must be completed.

78 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

State INITIALIZING:

This state is only executed one time following &vpoon or reset. In this state the
modules’ Init functions (such &cminitLgs, must be executed. In this state all
application variables have to be linked to the atalg entries of the Object

Dictionary. After this is finished, the state mawhiautomatically goes into the

RESET APPLICATIONvent.

Example:
tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent _p)

tCopKernel Ret = kCopSuccessful;

/I which event was called?
switch (NmtEvent_p)
{

/I after power-on link all variables with O D
case kKNmtEvEnterinitialising:

/'linking of variables for CANopen wit h OD
Ret = CcmDefineVarTab (aVarTab_g,
sizeof (aVarTab_g)/ sizeof (tVarParam));
break ;

State RESET APPLICATION:

In this event all manufacturer specific object®ifir0x2000 to Ox5FFF) and all
device specific objects (starting at 0x6000 up*8FFF) have been reset to their
power-on values. Power-on value refers to the defaalue from the Object
Dictionary or the last value saved in the non-vuldahemory. The application can
change the values of process variables at a later t

Example:

tCopKernel PUBLIC AppCbNmtEvent (NmtEvent NmtEven t p)
tCopKernel Ret = kCopSuccessful;

/I which event is called?
switch (NmtEvent_p)

{
case kNmtEvEnterlnitialising:
break ;

case kNmtEvResetNode:

/] reset process vars
wDigiOut = 0;

break ;

© SYS TEC electronic GmbH 2006 L-1020e_12 79

CANopen Software

State RESET COMMUNICATION:

Here all communication parameters (starting at 091 Ox1FFF) are reset to
their power-oi° values. Power-on value refers to the default vdhoen the
Object Dictionary or the last value saved in tha-molatile memory.

The communication objects for all modules in theN@fsien stack are created.
The application can now redefine all PDOs. Witls tlaill settings are overwritten
by the default values from the OD or the valuesestoin the non-volatile
memory. The state machine changes automaticalBRB-OPERATIONAIstate
after completion. A CANopen slave signals this estaansition by sending a
BOOTUP message.

29 The power-on values are the last values storghdrobject 0x1010 (Save Parameters), in as
far as they are not reset to their default valuiéls thie object 0x1011 (Restore Parameters). It
is up to the user to arrange the upload of Obijecti@ary entries into a non-volatile
memory. The user is supported thereby by moduleSZare.c.

80 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

Example:

tCopKernel PUBLIC AppCbNmtEvent (tNmtEvent NmtEvent _p)

tCopKernel Ret = kCopSuccessful;

/I which event is called?
switch (NmtEvent_p)

/I reset all communication objects (0x1000-
case kNmtEvResetCommunication:
Ret = CcmDefinePdoTab (
(tPdoParam GENERIC*) &aPdoTab_gJ0],
sizeof (aPdoTab_g)/ sizeof

break ;
Dissenting from the NMT
/ Initialisation \
[Initialising B €

(15)

A

OX1FFF)

(tPdoParam));

state machine

AAA

[Reset Appliction

W(16)
g 4
» Reset Communication]
2

A\ 4

(11

14)
L[Pre-Operational

7'y 5)

3 (3) 4) (7) 0
(13) Stopped }L

(6
A4 (8)

©

12
L[Operational

Figure 19, two additional states were implemented withis state.

© SYS TEC electronic GmbH 2006 L-1020e_12

81

CANopen Software

kNmtEvPreResetCommunication:

Shuting down active services
Erasing communication objects

i

kNmtEvResetCommunication:

- Initializing communication objects

i

kNmtEvPostResetCommunication:

- Transmitting the BOOTUP message

Figure 20: Additional NMT states

In the stat®RE-RESET-COMMUNICATIOBII active services are ended and the
communication object is deleted. In the s@@ST-RESET-COMMUNICATION
the transfer of the BOOTUP message is initiatederety a CANopen slave
signals that the initialization is complete. Thatstmachine changes RRE-
OPERATIONAILstate.

State PRE-OPERATIONAL:

In this state communication per SDO is possiblée Guarding, Node Guarding
or Heartbeat is executed if these services wergrord by the application. With
the help of SDOs, communication parameters and mgpparameters can be
modified for PDOs over the CAN bus. The CANopenidewswitches to state
OPERATIONALafter receipt of the NMTStart_ Remote_Nodfrom a NMT
Master30 or after calling the functionCcmBootNetwork() respectively
CcmSendNmtCommand (0x00, kKNmtCommStartRemoteNode)

After the execution of this event the functi@emConnectToNetis ended. State
changes are now initiated upon receipt of NMT comaisa The processing occurs
within the functionCcmProcess

The functionCcmProcessmust be called in a cyclical loop. The more ofieis
called, the more stable the CANopen layer's reastwill be to time events.

30 For network applications where no NMT Mastepiissent changing tOPERATIONALstate
can be forced by calling the function NMTExecComua@NmtCommEnterOperational).

82 © SYS TEC electronic GmbH 2006 L-1020e_12

User Layer

Within the functionCcmProcess CAN messages are evaluated first and assigned
to the corresponding internal CANopen modules. if event occurs that is
important for the application, then a Callback fime will be called. Most of
these Callback functions are located in the CCMuf@dr are components of the
application and can therefore be adapted by the &sethermore, the function
CcmProcesstests a few time cycles, for which a CAN messagg hmave to be
sent under certain circumstances. For example, PD@g be sent following
completion of the Event Timer. Likewise an SDO ahersent if the SDO server
expects a message from the SDO client during a eeiga transfer but does not
receive one.

State OPERATIONAL:

The transmission froRRE-OPERATIONALo OPERATIONALstate generates a
transfer of all asynchronous TPDOs. In this stdd®P are transferred if an event
occurs (such as EventTimer expired, SYNC messaggivierd, modification of
process variables). If PDOs are received, them tlaa is put into the OD and the
application will be notified by calling the correspling callback function
containing applicable parameters.

State STOPPED:

In this state the execution of all services is gagpwith the exception of NMT
services (this also includes Node Guarding and tHeat).

2.6.2.5 Shutting Down a CANopen Application

The CANopen application is closed by executing thieinction
CcmShutDownCANopen This function calls the functioXxxDeletelnstance
for each module that is configured in the CANopéacls. The modules finish
their services and delete the communication ohjéltte data structures of the
CANopen layer are invalid after the functi@emShutDownCANopenhas been
executed.

© SYS TEC electronic GmbH 2006 L-1020e_12 83

This document has been truncated!

If you wish to receive a complete copy of this document
please contact us via e-mail:
support@systec-electronic.com

CANopen Software

4 Notes on CANopen Certification

For CANopen certification with CiA, the followindisuld be noted:

« Only a device can be certified and not software
The CANopen stack was certified with the CANopengChhom SYS TEC
electronic GmbH.
Certificate No.: CiA200002-301Vv30/11-013

« Thus we can demonstrate that certification with @ANopen stack is
possible.

However, certification also depends on a numberfagtors, that we cannot
influence directly.

Therefore please note the following:

* The entries in the OD must match those in*tDS file. This effects above
all the device name (Index 0x1008, the hardwaresarfidvare version (Index
0x1009 or 0x100A) etc.

e The number of PDOs must match the PDOs actualsemtan the OD

« All indices that are present in the software musb &e entered in the EDS
file. There can be no hidden entries.

e The entries in Index 0x100C and 0x100D (Life Guagdlimust have a default
setting of zero.

e The Index 0x1003, Sub-index 0 can only be writierwith a 0 and then the
error field has to be erased. Writing a number thareater than 0 will result
in an error.

* The Mapping Parameter Sub-indexes 0 (e.g. 0x1608,06501,0, 0x1AQ00, O
etc.) can be written with values up to 64 maxh# thaximum value is exceed
an error message will result. Since our CANopentwsoke supports
bytemapping in its default setting, all values »8 i@jected.

e It must always be possible to answer RTR-querias teethe node (regardless
of TxType).

If the criteria in aforementioned points are miegrt certification should be easy.

Note:

We verify our software ourselves with the current¢rsion of the CIA
Conformance Test Tool. We can also perform pretektsustomer devices in
house.

412 © SYS TEC electronic GmbH 2006 L-1020e_12

CANopen Certification

© SYS TEC electronic GmbH 2006 L-1020e_12 413

CANopen Software

5 Glossary

User Layer:
CiA DS-301:

Framework:

CiA DSP-302:

CiA DSP-304:
Communication Profile
Device Profile

CiA DS-401

Object Dictionary (OD):

Communication Object:
TPDO
RPDO

Tx-Type

MPDO

Definition of communication profile anapplication
layer

Framework for programmable CANopenicey
Framework for safety relevant commation

Specification of transmission protocols,
communication objects, data objects

Specification of device-specific \#ees and
properties

CiA Draft Standard 401
Device profile for generic I/O modules

The Object Dictionary (ODy the main data
structure of a CANopen devices for storage of all
device data. It serves as a binding element between
the application and the communication layer. Any
OD entry is address via an index and a sub-index.

Object for transmitting dadb@tween CANopen
devices.

Communication object for sending process data
(Transmit Process Data Object)

Communication object for receiving processadat
(Receive Process Data Object)

PDO transmission type. This always corresisoto
sub-index 2 of the PDO communication parameter
(object index 0x1400 to Ox15FF and 0x1800 to
OXx19FF).

Multiplexed PDO — Enables the transmission of
process data in an SDO-like manner. It is possle
transmit data to one or multiple devices

414

© SYS TEC electronic GmbH 2006 L-1020e_12

Index

simultanously without having a PDO for each single
object.

DAM Destination Address Mode — MPDO mode where the
producer adresses the destination object in the
consumer’s OD.

SAM Source Address Mode — MPDO mode where the
producer gives the address of the source objgbein
local OD. The producer has a Scanner-list contginin
all the objects to be sent. The consumers have a
corresponding dispatcher list. This list conneetshe
producer’s source object to a destination object in
the consumer’s OD.

© SYS TEC electronic GmbH 2006 L-1020e_12 415

CANopen Software

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

,CANopen User Manual“, Software Manual, SYS TE@ctronic GmbH,
Dokument Nr. L-1020, dieses Handbuch

,CAN-Treiber*, Software Manual, SYS TEC eleaio GmbH, 2004,
Dokument Nr. L-1023

,CANopen Objektverzeichnis®, Software ManualYS TEC electronic
GmbH, 2004, Dokument Nr. L-1024

,CANopen - Application Layer and Communicatiémofile“, CiAl Draft
Standard 301, Version V4.02, 13 February 2002

,CANopen - Framework for CANopen Managers antbgPammable
CANopen Devices*, CiADraft Standard Proposal 302, V3.2, 04. 12. 2004

,CANopen - Interface and Device Profile for IE&E1131-3 Programmable
Devices*, CiA Draft Standard 405, V2.0, 21. 05. 2002

,CANopen - Device Profile for Generic I/0 Modeg“, CiA' Draft
Standard 401, V2.1, 17. May 2002

1 CiA CAN in Automation e.V.

418

© SYS TEC electronic GmbH 2006 L-1020e_12

Index

© SYS TEC electronic GmbH 2006 L-1020e_12 419

Index

INDEX
Abort Codescooeevviiiiiiiieeeiinnn. 344
AMI ..o 408
AMI Interface.......ccoceeeveeeeennnns 408
Application-specific Layer............ 49
Big Endian...........cccooeeiiiiiiiiiiiinns 408
Bit Rate Tableccccceeeeeeenie, 404
BOOTUP. ..., 35
Callback function
CcmCbEmccEventccoevvnee. 150
CcmCbEmcpEvent.........ccoooooee. 156
CCMCDOEITOr ..., 100
CcmCbHbcEvent........cccooeeeevvvnnnen. 161
CcmCbLgsEventevvvvevvinnnnns 127
CcmCbLssmEvent.........c..cccuuveee... 199
CcmCbLsssEvent.................. 104, 202
CcmCbNmMtEvent.......cccoooevevvvvinnnnnn. 99
CcmCbNmtmEvent........................ 142
CcmCDbReStOreccoeeevvvveeeeeennnnn. 132
CcmCbStoreveeeeeeeeieeeiiieeee, 130
CcmCbStoreLoadObject 134
CcmCbSyncReceived.................... 147
Callback Function 281
CAN Bit Rate.......ccccevvveeeevien, 404
CAN DIiVEr ..., 403
Selection......cccoeevveeieiiiieeeee 240
CAN ERROR LED.............. 182, 185
CAN RUN LED........c........ 181, 184
CANopen DLL...........cceeen.. 383, 384
CANopen StacK.........ccoeevvvvivieiinins 47
CANopen Stack Configuration ... 348
CANopen Stack Functions.......... 203
CCIXXX.C oo, 402
CCM.iiii i, 49
CCM_CONVERT _LSSCMD_TO L
SSFLAG.....ii i, 195
CCM_DR303 _USE_BICOLOR_LE
D 187
CCM_MODULE_DR303 3....... 182
CCM_MODULE_INTEGRATION
... 182, 353
CCM_USE_STORE_RESTORE 354
Ccm303.... i, 181
CcmBOOt ... 173
CcmDIPAO...eecciieeeieeeeee 119

CCMEMCC...cuiiviiiiiiiiccce, 147
CCMEMCP...nviiiiiieiiiiieeeeieeeeiee e 151
CemFloat........coovvveiiiiiiiiiiiii 174
(0707 111 = | oo 158
CemHDP .o 162
CCMLGS ..o 125
CCMLSS v 188
(0707 0111 F= 1] o FE 84
CcmMMPAO ..., 334
CemNMIM ..o 137
CCmMOD] .., 122
(0707 111570 [0 Lo 107
CemSnPdo.....ccviiii 144
000111 15] (0] (TP 128
CemStPdO ... 175
CCMSYNC..niiiiiieeiiieee e, 144
CDRV .o, 48
CDRV_CAN _SPEC.....cccccceennn..e. 356
CDRV_IDINFO_ALGO.............. 357
CDRV_IDINFO_ENTRIES 358
CDRV_MAX INSTANCES....... 354
CDRV_MAX RX BUFF_ENTRIE

S HIGH. ..., 371
CDRV_MAX RX BUFF_ENTRIE

S LOW...iiiiiiieeeeei, 371
CDRV_MAX TX BUFF_ENTRIE

S HIGH. ..., 371
CDRV_MAX TX BUFF_ENTRIE

S LOW...iiiiiiieeeei, 371
CDRV_TIMESTAMP 358
CDRV_USE_BASIC_CAN......... 355
CDRV_USE_HIGHBUFF........... 356
CDRV_USE_IDVALID.............. 356
CDRV_USED_CAN_CONTROLLE

o 535
cdrvigt.h oo 403
CArvXXX.N.oeeiii 402
Certificationccoeeevvviieiiinnens 412
CIA303-3. .o 181
COB Callback Function....... 288, 294
COB Module.......ccooevviviiniiiiieennn. 288

© SYS TEC electronic GmbH 2006

L-1020e_12 421

CANopen Software

COB_MAX_RX_COB_ENTRIES

Dynamic Memory Management.. 405

.. 288,371 EMCC Callback Function147, 148,
COB_MAX_TX_COB_ENTRIES 150, 307, 310
.. 288,371 EMCC_MAX_CONSUMER......371
COB_MORE_THAN_128 ENTRIE EMCP_USE_EVENT_CALLBACK
S 835 638
COB_MORE_THAN_256_ENTRIE EMCP_USE_PREDEF_ERROR_FI
S 835 ELD . 363
COB_SEARCHALGO................. 359 Emergency.....cccooovviiiiiiiiiiiiiinneees 30
Communication Objects............... 288 Emergency Consumer Module.... 307
Communication Parameters.202, 205 Emergency Error Codes 346
Communication Profile 40 Emergency Producer Module....... 313
Constant Error Callback Function.............. 100
CCM_LSSFLAGS_ALL............... 195 Error Handling..........cccceeviiiinnnnn. 42
CCM_LSSFLAGS_SLAVE_ADDRE Event TIMer......cccooevveveieeieenen 83
S 519 Exped|ted Down'oad ___________________ 228
EMCP_EVENT_ERROR_DELETEA Expedited Upload........................ 230
PRSPPI Ko\ free 405
EMCP EVENT ERROR LOG...157 Fun.c.t.i.(.).ﬁ
kLssmCmdInquireNodeld 195 A
kLssmCmdInquireProductCode195 gcmggggltlndw?t%r's..i """"""""" 1?53
kLssmCmdInquireRevisionNr....... 195 Ccm3038rti§ess gt |;:a S 185
kLssmCmdInquireSerialNr............ 195 Ccm3OSSethrorSt ? oo, 183
kLssmCmdInquireVendorld.......... 195 CgmBootl\?etvtljgrk AlC s '173
kLssmEvActivateBitTiming.......... 200 P e
kLssmEvActivateBusContact........ 200 gcmglea;_rPéeDeflnedErrorFleId.... ig:;
kLssmEvDeactivateBusContact200 Ccm Conf!gHrtr:cp """""""""""""" 162
kLssmEvModeSelective................. 200 Cgmcggf:ngs """"""""""""""" 126
kLssmEvResult...................co. 200 (D JIT e
kLssModeConfiguration................ 190 ggmggﬂrlgss mncCFi ggﬁlégﬁrer """""" 1156
kLssModeOperationccc...... 190 ComG 9)':T Net. ... 92
LSSMOGESEIeCiVe... ... 190 GOMOONNECITONe v, 92
ggi_rﬂiELEOC4gg5 CcmDefineNmtSlaveTab.............. 138
— AT e e e CcmbDefinePdoTab........ccccccee. 119
COP_MAX_INSTANCES........... 348 CcmbDefineStaticPdoTab............... 177
COP_USE_CDRV_FUNCTION_PO CcmDefineVarTab.........cccceevvineen. 93
INTER ..o, 349 CcmEmccDefineProducerTab....... 148
COP_USE_OPERATION_SYSTEM CcmEnterCriticalSectionPdoProcess
... 523 PR PRPRRPIRRC 1) o
COP_USE_SMALL_TIME 352 CcmHbcDefineProducerTab......... 159
[o36] o 1e1 {01 4 403 CeminitCANOPENovviiins 86
CRC Calculation.............ccc.cc....... 230 ggm:g::ﬁfg‘gc -------------------------------- igg
DAM v 367, 415 CemINItLgS...vveeeeeiieee e 125
e AT N 178,266 CorninitNmtm oo 137
Data Structures 54, 204 CemiInNitStore ..o, 128
Development Environment.......... 372 CcminitSyncConsumer 144
Directory Structureuvvveeees 52
DR303-3 ..o, 181
422 © SYS TEC electronic GmbH 2006 L-1020e_12

CcmLeaveCriticalSectionPdoProcess

.. 397
CcmLockCanopenThreads............ 380
CcmLockedCopyData. 381
CcmLssmConfigureSlave.............. 191
CcmLssmidentifySlave.................. 197
CcmLssminquireldentity............... 194
CcmLssmSwitchMode................... 189
CcmPdoSendMPDO.............cccc.... 334
CCMPIOCESS ...ceviieiieieeeeee e, 98
CcmProcessLssInitState.................. 97
CcmReadObjectcooeeeeeeeeennn. 124
CcmSdocAbOrt......ocvevveeeiiieeeee, 118
CcmSdocDefineClientTab............. 107
CcmSdocGetState.........coeeeevevvnnnnnns 115
CcmSdocStartTransfer 111
CcmSendEmergencyoeeeeeee. 154
CcmSendNmtCommand................ 139
CcmSendThreadEvent........... 382, 394
CcmShutDownCANopen................ 91
CcmsSignalCheckVar..................... 144
CcmsSignalStaticPdo...................... 180
CcmStoreCheckArchivState.......... 129
CcmTriggerNodeGuard................. 141
CcmUnlockCanopenThreads......... 381
CcmWriteObject..........oooooeeeeeee. 123
CobChecK....c.cccuviviiiiiiiiiieeeen, 292
CobDefiNe ...coovieviieiieee 289
CobProcessRecvQueue. 294
CobSend........oooveeiiiiiii, 293
CobUndefineoooevvvviviiiiiiiii, 291
EmccAddInstance.........cc...ccouuunn... 307
EmccAddProducerNode................ 311
EmccDeletelnstance.............. 308, 315
EmccDeleteProducerNode............. 312
Emcclnit.....ccoooovieeiiiie e, 307
EmccNmtEventcocooevevvennnn. 308
EmccSetEventCallback................. 310
EmcpAddinstancecccccevvnnees 314
Emcplnit............ccc 313
EmcpNmtEvent.........ccccccoooeiiiees 316
EmcpSendEmergency 317
HbAddInstance.........cccccoooevveeerennn. 326
HbcAddInstance.........cccoeeeevreennnnns 320
HbcDeletelnstance.........cccoccuvvne.. 321
HbcINit.......o o, 13
HbcNmtEvent...........cccoeeeevvvnenenenn. 322
HbcSetEventCallback.................... 324
HbpDeletelnstancecc.uuue.e. 327
HbpInit ..., 32

HDPProCessuvvvueeiiiines 329
NmtExecCommand..............c.c........ 295
NmtmAddSlaveNode.................... 300
NmtmConfigLbgm..............ooeeee. 302
NmtmDeleteSlaveNode................. 301
NmtmGetSlavelnfo...........ccccee.... 304
NMtMProcess......cocevvveviiiinneenn, 306
NmtmSendCommand.................... 305
NmtmTriggerNodeGuard.............. 303
NMESProcess......coovevvveviiiiieeeen, 298
NmMtsSendBootupuvueeenneennnnnes 297
NmtsSetLgCallback...................... 299
ObdAccessOdPart..........ccccoeeeueen.. 274
ObdDefineVvar.......ccccoeeeeveeeivnenennn. 277
ObdGetEntry.........ceeeeeeeeeinennn. 269
ObdGetNodeld.........ccccocevvvveernnnnn. 279
ObdGetNodeState............cceevevnnneee. 278
ObdReadENtryccccceveeiieieeeeeenn. 272
ObdRegisterUserOd.............c.uuuue. 280
ObdWriteEntry......cccooeveeeiiieeeenn. 270
PdoAddInstance..........ccooceevveeennnnes 254
PdoDefineCallback....................... 257
PdoDeletelnstance 255
PdoForceAsynPdocccceeeee. 265
Pdolnit.......ooooiviii e 5
PdoNmtEvent..........cccooeeevvvvnenenenn. 255
PdoProcessAsync...........ccccceeeee... 261
PdoProcessCheckVar.................... 260
PdoProcessSync..........ccccccevveennn. 262
PdoSend..........cooveviiiiiiiiiiieee, 258
PdoSendMPDO.........ccooeevvvvureene. 332
PdoSendSync...............ccc 264
PdoSetSyncCallback..................... 264
PdoSignalDynPdo.........cccccevveeeee.. 259
PdoSignalStaticPdo....................... 267
PdoSignalVar................ccccceeeee. 260
PdoStaticDefineVarField.............. 267
SdoCADbOIt ..., 246
SdocAddInstanceccccoeeveunnn... 233
SdocDefineClient...........ccceeeeeee. 236
SdocDeletelnstance...........cccoccuu.... 234
SdocGetState........ooevevivviieiiiinnens 244
SAOCINIt....ciieeiicii e 123
SdoclnitTransfercoccevveeveeeennnnes 239
SdocNMtEveNnt........coooeevvveevnieinnnnns 234
SdoCProcess.......cccoeevevvvveiiiiiienens 245
SdocUndefineClient...................... 238
570 (015721 o o] o A, 225
SdosAddInstancecccceeeeee. 217
SdosDefineServerccoooooevveeenn. 220

© SYS TEC electronic GmbH 2006

L-1020e_12

423

CANopen Software

SdosDeletelnstance........................ 218 kCobTypRmtRecv.......cccccvvvvrenn.. 290
SdoSsINit.......coovvviieieeee 12 kCobTypRmtSend....................... 290
SdosNmtEvent..........cccccceeveeinennne. 218 KCobTYpSeNd......cccocvvveveeeeenn. 200
SdosProce_ss 224 kernel DIVl ..o 383
SdosUndefineServer...................... 223 Kernel Mode Driver ... 376
TgtCanlsrxxx...... SRR 407 KLssmEvIdentifyAnySlave 200
TgtCavCheckValid........................ 172 S T
TGLCAVCIOSE oo 168 KLSsmEvinquireData.................. 200
TQtCaVCreate.cocoovvvevveverennnnns 164 KLsssEvActivateBitTiming......... 105
TgtCavDelete..........c.ovveverveerennne. 165 kLsssEvConfigureBitTiming 105
TGtCaVGEtALIiD........veeveeeeeeen 171 kLsssEvConfigureNodeld........... 105
TgtCavinit......cc.ocoevveeevieeecieeeenen 163 kLsssEvDeactivateBusContact.... 105
TgtCavOpeNccccvvveeeeeirieeeeee. 167 kLsssEvEnterConfiguration 105
TgtCavRestore.........cccvvveiiieiiieennnns 170 kLsssEvEnterOperation............... 105
TgtCaVShutDown 163 kLsssEvPreResetNode................. 105
%tgr?;atg(r;nlnterrupt ------------------- j g? kLsssEvSaveConfiguration......... 105
TgtEnableGlobalinterrupt.............. 406 kl\ggéC0mmEnterOperatlonal - 140,
ToGetTickoount 405 407 KNmICommEnterPreOperational140.
TGUNIE oo 406 296
TQHUNICANIST ... 406 kNmtCommEnterStopped ... 140, 296
TotinitSerial.......c.coovoeeeveeeeeeeeee. 406 kNmtCommlnitialize................... 296
TtNItTIMEr .., 406 kNmtCommResetCommunication
TgtMemCpyocovvveeeiieeee. 405, 407 140, 296
TgtMemSet........ccccvveeeeeeeeeens 405, 407 kNmtCommResetNode 140, 296
TgtTImerISI’ 406 kNthommStartRemoteNode 140’
GLOBAL.H ...t 399 206
Hal’dwal’e-SpeCIfIC Layer 48 kNthOmmStopRemoteNode 140’
HBC Callback Function158, 161, 206
318, 324 kNmtErrCtrIEvBootupReceived . 143
prNmtEvent 328 kNmtErrCtrlEvHb0COnnected 161
Heartbeat 36, 38 kNmtErrCtrIEvHbcconnectlonl_ost
Heartbeat Consumer...................... 3 e, 611
Heartbeat Consumer MOdule 318 kNmtErrCtrIEvHchodeStateChang
Heartbeat Producer........................ 38 <o 161
Heartbeat Producer Module......... 325 kNmtErrCtrIEvLgConnected....... 127
Indicator Specification................. 181 KNmtErrCtrlEvLgLostConnection
Inhibit Time ..., 2 s 27
|n|tla|lzatI0n 35 kNmtErrCtrlEngMsgLost 127
INITIALIZATION 74, 92 kNmtErrCtrIEngNoAnswer ______ 143
INlTlALIZING 76 kNmtErrCtrlEngNodeStateChange
Instance Handlec........ 66 o 314
Instance POInteI'S 67 kNmtErrCtrlEngSuspended """" 143
Intel FOI‘mat 408 kNmtErrCtrIEngToggleError . 143
kCobTypForceRmtRecv.............. 291 kNodeStatelnitialisation............... 278
kCobTypForceSend..................... 291 kNodeStateOperational 278
KCODTYPRECV ..., 290 kNodeStatePreOperational.......... 278
424 © SYS TEC electronic GmbH 2006 L-1020e_12

kNodeStateStopped...........cc........ 278
KObdACCVaArcooevvviiiiieiieennn, 277
KObdDirlnit.......ccoooeevveeeiiiiieeennnn. 276
kObdDirLoadccceevevneivnnnnnn. 276
KObdDIrRestoreccceeeevevvnnnnnns 276
KObdDIirStoreccccoeevvveevnncnnnn. 276
kKObdEVAboOrtSdo...........ccccevvnee.e. 284
kObdEvCheckEXist..................... 283
KObdEVINitWrite........cccooevvvvnneenns 283
kObdEvPostRead 283
KObdEVPOStWIiteccevveeeevven, 283
kObdEvPreRead..........ccc.ccuvvee. 283
KObdEVPreWritecccvevevvvvnnnnnns 283
kObdEvWrStringDomain............ 284
kKObdPartAllcccoovvvveieiiien, 275
kObdPartDev.........ccccoeveeveniiinnnnnns 275
kObdPartGen..........cccoeeevvvvnennnnn. 275
kObdPartMan..........ccccceeevvneeinnnnns 275
KObdPartUsr........ccoocevvveeivieeenn. 275
Konstante

KLSSMEVTIMEOoUtceeevnrvennnnenn, 200
Layer Setting Service................... 32
Lgs Callback Function 125, 127, 298
Life Guarding.............uveveennnn. 36, 37
10) 376
Little Endian........ccccccoevvvvneeinnnnnnn. 408
LSS, 32
LSS addresS......occevevvnnnnn. 190, 194
LSS Callback Function 104
LSS master.....cooevvivviiviiinnnnn. 32,188
LSS mode......cooeevvvviiiiiiiieeeiee, 32
LSS slave......cccovvviiiiiiiiiiiciieeenn, 188
LSS slaves.....ccoooeveveeeeiiiiiieiiieeeee, 32
LSS INVALID_NODEID.......... 279

LSSM_CONFIRM_TIMEOUT .. 370
LSSM_PROCESS_DELAY_TIME

... @7
MAallOC ... 405
Master callback function............. 137
Master Callback Function137, 141,

142, 301, 306
Motorola Formatu..... 408
MPDO ..., 331, 414
Network Management................... 35
NMT

OPERATIONALccvvveiveeeieen, 278

PRE-OPERATIONAL......cc.......... 278
STOPPED. ..., 278
NMT callback function................ 202

NMT Callback Function74, 78, 93,
99, 110, 202, 295

NMT Command..........ccceeeevvvnnnnens 295
NMT Commandsccecevvneeennees 300
NMT EIOr...oovveeiiiiieiiieeeeeen 101
NMT Master Module................... 300
NMT Moduleccoevvviiviiinnnnen. 295
NMT Slave Module...................... 297
NMT State Machine....... 35, 101, 295
NMTM_MAX_ SLAVE_ENTRIES
... 713
NMTS _USE_LIFE GUARDING 363
Node Guarding..........ccuvvvvveniinnnnnnn. 36
Node Number........cccoveeivivenennnnn. 279
Node State........ccovvvviiiiiiiiiiieiins 278
OBD Module.......ccoooevvvveiiiiienn, 268

OBD_CHECK_FLOAT_VALID 360
OBD_CHECK_OBJECT_RANGE

... 62
OBD_CHECK_OBJECT_RANGE

... 608
OBD_OBJ_SIZE_BIG......coo........ 269
OBD_OBJ_SIZE_MIDDLE.........269
OBD_OBJ_SIZE_SMALL.......... 269

OBD_SUPPORTED_OBJ_SIZE.269
OBD_SUPPORTED_OBJ_SIZE.359

OBD_USE_DYNAMIC_OD.......360

OBD_USE_STRING_DOMAIN_IN
CRAM e, 360

OBD_USER _OC ...ooovooeeeeernn. 280

Object Callback Function122, 130,
132, 205, 214, 227, 271, 273, 281

Object Dictionary..................... 41, 58
Object Dictionary Configuration .371
OD for I/0O DevViCesS.....cccceevveeeeeennn. 59
Operating Systems.............c.c........ 372
OPERATIONAL...........cceeenee 36, 82
PDO.....uviiiiiiiiiiiiieieieaeenn 17,247, 353
Event Time.......ooovviiiviiiees 365
PDO Callback Function121, 250,
258
PDO Configuration................ 80, 120
PDO EITOr ..o, 102

© SYS TEC electronic GmbH 2006

L-1020e_12

425

CANopen Software

PDO Event TiIMeccooevvvvveeennnn. 250 SDO...oiiiiii e 8.2
PDO Inhibit Timecoccevveeennnne. 250 SDO Abort Codes.......ccoocevnvvennnnns 344
PDO Initialization........................ 253 SDO Block Transfer.................... 230
PDO Linkingeeenn. 18, 82, 120 SDO Block Transfer Protocol 213,
PDO Mapping.................. 18, 82, 120 230
PDO Module.........ccoeeevvviiniiinnnnns 247 SDO Callback Function111, 116,
PDO Receive Notification........... 250 119, 231, 239, 241, 245, 247
PDO Remote Frame 366 SDOClent......cccoeceiiiiiiiiiiiiiinns 225
PDO Send Notification................ 250 SDO Client Creation 227
PDO Synchronization..145, 147, 263 SDO Client Table........................ 226
PDO Transfer....... 250, 260, 261, 262 SDO Download Protocol............. 209
PDO Transmission................. 18,258 SDO Transferccooeevvvvviviiivnnnnnn. 207
PDO_DISABLE _FORCE_PD.367 SDO Upload Protocaol.................. 212
PDO_GRANULARITY 365 SDO_BLOCKSIZE_ DOWNLOAD
PDO_PROCESS TIME _CONTROL i 63
... 643 SDO_BLOCKSIZE_UPLOAD... 368
PDO_USE _DUMMY_MAPPING SDO BLOCKTRANSFER......... 368
... 6.73 SDO_CALCULATE_CRC......... 369
PDO_USE_ERROR_CALLBACK SDO_CALCUULATE_CRC....... 230
... 663 SDO_MAX_ CLIENT_IN_OBD. 233
PDO_USE_EVENT TIMER...... 365 SDO_SEGMENTTRANSFER... 228,
PDO_USE_MPDO_DAM_CONSU 229, 369
MER ... 367 SDOC Data Structures................. 226
PDO_USE_MPDO_DAM_PRODU SDOC Module.........ccooeevvviinnnnnn. 225
CER e, 367 SDOC_DEFAULT TIMEOUT..370
PDO_USE_MPDO_SAM_CONSU SDOS ..., 203
MER ..o, 367 SDOS_DEFAULT_TIMEOUT .. 369
PDO_USE_MPDO_SAM_PRODUC Segmented Download.................. 228
ER 367 Segmented Uploadcccce...... 229
PDO_USE_REMOTE_PDOS.....366 Sending PDOScceeeiiiiieeeeee, 247
PDO_USE_STATIC_MAPPING 367 Service Data Objects............ccou..... 28
PDO_USE_SYNC PDOS........... 365 Software Structure............cccevvenn.... 45
PDO_USE_SYNC_PRODUCER 366 static PDO mapping..... 247, 265, 367
PDOSTC.....cooi i, 47,247 static PDO Mapping.......ccccceeennn.. 175
PRE_OPERATIONAL............ 90, 92 Static PDO mapping..........eceeeeeeee. 47
Pre-Defined Connection-Set.......... 35 STOPPED....cccoviieiiiieeeeiieceei 36
PRE-OPERATIONALS35, 74, 78, 80, Store Callback Function...... 128, 134
101 Structure
Process Data Objects 17 tCeminitParamccceeee. 87, 389
Process Variables......................... 202 tCOLCAIVFCE.....uvviveveeeeeeeeeeeeee, 351
PXROS oo 372 tCobParam...........ccooeeeviviieiiiieee, 290
Reset Communication 121 tEmcParam............ccoooiiiiiin 150
ReSet NOJE.....oeeeeeeeeeeeeeeeeeeenn 121 tHbcProdParam............ooeeee 159
Reset Communication ... 36 tLinuxParam............ccoeeeieeineeennns. 378
— tLSSAAAresSS.....coovvveeeieiieeeeeeeee, 190
Return COdescovvviinininenen, 336 tLssCbParam.........ccccceeeveeeriiinnnnnnn. 104
SAM v 367,415 tLssmBItTimingoooevvvvvenenen. 193
426 © SYS TEC electronic GmbH 2006 L-1020e_12

Index

tLssmldentifyParam 198
tLsSsSmMReSUlt.......cooevvviiiiieieeiis 201
tMPdoParam...........cccoeeveveivieennnnn, 333
tNmtmSlavelnfo........cccoevvveviennnnen. 305
tNmtmSlaveParam 303
tObdCbParam.......cccooeevveviiiiiins 281
tObdCbStoreParam..........ccceceuvn.eee. 134
tObdVStringDomain 284
tPAOEITOr...cvviiii e, 102
tPdoParamcocoevviviiiiviniieeennn, 120
tPdoStaticParam.........cccoceuevvevnnneee. 177
tSdocCbFinishParam..................... 242
tSdoclnitParam........c..cccveveervvnnnnnn. 232
tSdocParam........ccoccovvevvnnnnnn. 108, 237
tSdocTransferParam.............. 112, 240
tSdosInitParamccceeevevvveeenenn. 216
tSdosParam.......c.ccoeeveveviivieeiieeeenn, 221
tVarParam.......co.covveviiiiiiiinieeen 94
tWindowsParamccoeeevvvvveenns 390

SYNC Callback Function144, 145,
147, 248, 265

Synchronization Objects................ 30

target.Co.coooevvviiiiiieeeieeeeeen 064

target.n ... 540

TARGET_HARDWARE349, 402,
405

Telegram Table........cccccceeeeeeennnnn. 43

TGT_CONFIG_CANOPEN_LEDS
... 861

TGT_SWITCH_ERROR_LED ..182,
187

TGT_SWITCH_RUN_LED........ 186
Time Stamp Objectccccceeeeennn. 30
Transmission Protocols.................. 41
tSdocState.......cooevvveeiiiiiiiieiiees 116
Typ

tVXDTYPE ..o 390
User Layer......ccooovvieiiiiiiiiiiiiiieees 45

Variable Callback Function54, 95,
250
WINAOWS ..., 383

© SYS TEC electronic GmbH 2006

L-1020e_12

427

CANopen Software

428 © SYS TEC electronic GmbH 2006 L-1020e_12

Suggestions for Improvement

Document: CANopen Software Manual
Document number: L-1020e_12May 2006

How would you improve this manual?

Did you find any mistakes in this manua? page

Submitted by:
Customer number:

Name:

Company:

Address:

Return to:
SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz, Germany
Fax : +49 (0) 3661 62 79 99

© SYS TEC electronic GmbH 2005 L-1020e_12

Published by 5YS TEC

© SYS TEC electronic GmbH 2005 Ordering No. L-102
Printed in Germany

