

W5300 Linux Driver Porting Guide
(Version 1.0)

©2009 WIZnet Co., Ltd. All Rights Reserved.

☞ For more information, visit our website at http://www.wiznet.co.kr

WIZnet’s Online Techical Support

If you have any question or recommendation about our products, please write down

http://www.wiznet.co.kr/

it on Q&A Board in WIZnet website(www.wiznet.co.kr). WIZnet’s engineer will give

you answer as soon as possible.

CCLLIICCKK

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 2 page

http://www.wiznet.co.kr/

COPYRIGHT NOTICE

Copyright 2009 WIZnet Co., Ltd. All Rights Reserved.

Technical Support: support@wiznet.co.kr

Sales & Distribution: sales@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 3 page

mailto:support@wiznet.co.kr
mailto:sales@wiznet.co.kr
http://www.wiznet.co.kr/

Document History Information

Version Date Descriptions

Ver. 1.0.0 First Release

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 4 page

Contents

1. INTRODUCTION .. 6

2. SYSTEM CONFIGURATION ... 6

2.1. BUS WIDTH CONFIGURATION .. 7

2.2. BUS ACCESS TIMING CONFIGURATION .. 7

2.3. BASE ADDRESS CONFIGURATION - MAPPING .. 10

2.4. INTERRUPT PIN CONFIGURATION ... 10

3. DRIVER PORTING ... 10

3.1. MAKEFILE .. 11

3.2. BASE ADDRESS CONFIGURATION .. 11

3.3. IRQ(INTERRUPT REQUEST) CONFIGURATION... 11

3.4. MAC ADDRESS .. 11

3.5. SOCKET RX/TX BUFFER .. 12

3.6. OTHER LINUX KERNEL VERSION .. 12

4. QUICK START – LOOPBACK PROGRAM ... 13

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 5 page

1. Introduction
The W5300 Linux driver is for the products which use embedded Linux OS. The W5300 can

originally use software protocol stack in OS kernel because it supports conventional MAC-RAW

mode and also it can use hardware TCP/IP stack simultaneously. We call this mode ‘Hybrid

mode’. The Hardware TCP/IP socket has same meaning with Channel in <Fig 1>

< Fig 1. W5300 Hybrid mode >

This document is porting guide of Linux driver for new system. So it can be divided to three

parts as below.

 Bus configuration

 Interrupt configuration

 W5300 Default configuration

In this guide, the examples of system settings are based on W5300E01-ARM board.

2. System configuration
If the circuit settings of W5300 are right, the MCU setting must be changed according to its

hardware. The circuit settings can refer to the document ‘6. External Interface’ of ‘High-

performance Internet Connectivity Solution-W5300’. In this section, the system setting is

generally set up at the bootloader and the kernel.

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 6 page

2.1. Bus Width configuration
The Bus Width which connected from MCU to W5300 must be sets to 16bit. In general, the

setting of MCU Bus sets in the initialize routine of Bootloader. Please confirm the settings

about MCU Bus from the MCU datasheet.

For example, the S3C2410 which is the MCU of W5300E01-ARM sets the Bus width by using

BWSCON(0x48000000) register. At the W5300E01-ARM board, the CS pin of W5300 is connected

to CS2 pin<Fig 2>. In the BWSCON register, the bus width of CS2 sets to 16bit.

< Fig 2. A part circuit diagram of W5300E01-ARM >

2.2. Bus access timing configuration
Please set the Bus access timing which access from MCU to W5300.

The /CS low time of access timing in W5300 has been set to 65ns when read timing and it has

been set to 50ns when write timing. (Refer to the ‘High-performance Internet Connectivity

Solution – W5300’, ‘7 Electrical Specifications’)

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 7 page

Description Min Max

tADDRs Address Setup Time after /CS and /RD low - 7 ns

tADDRh Address Hold Time after /CS or /RD high - -

tCS /CS Low Time 65 ns -

tCSn /CS Next Assert Time 28 ns -

tRD /RD Low Time 65 ns -

tDATAs DATA Setup Time after /RD low 42 ns -

tDATAh DATA Hold Time after /RD and /CS high - 7 ns

tDATAhe DATA Hold Extension Time after /CS high - 2XPLL_CLK

< Fig 3. W5300 READ Timing >

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 8 page

Description Min Max

tADDRs Address Setup Time after /CS and /WR low - 7 ns

tADDRh Address Hold Time after /CS or /RD high - -

tCS /CS low Time 50 ns -

tCSn /CS next Assert Time 28 ns

tWR /WR low time 50 ns

tDATAs Data Setup Time after /WR low 7 ns 7ns + 7XPLL_CLK

tDATAf Data Fetch Time 14 ns tWR-tDATAs

tDATAh Data Hold Time after /WR high 7 ns -

< Fig 4. W5300 WRITE Timing >

The Bus access timing of MCU should be set suitably. If the access cycle time sets shorter than

65ns, the data is broken. However the access cycle time sets too long, it comes to be the low

data access speed of W5300. So we must set the access cycle time to a little longer than 65ns

but the closest time to 65ns.

< Fig 5. W5300E01-ARM BUS Access Timing >

S3C2410 which is the MCU of W5300E01-ARM sets the access timing by using

TACS/TCOS/TACC/TACP/TCOH/TCAH registers. Where, register of access cycle setting is TACC.

Therefore TACC sets according to previous condition and other registers sets ‘0’. Since the bus

clock of W5300E01-ARM is 100 MHz, the suitable access cycle clock for previous condition is

‘7’. But it disallows in S3C2410. So we should set the access cycle clock to ‘8’. (TACC = 5)

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 9 page

2.3. Base address configuration - Mapping
In the Linux kernel, it should be added a routine which is mapping the base address (physical

address) of W5300 from driver to virtual address. Generally a hardware dependant routine in

the Linux kernel is realized in ‘arch/<architecture>/<MCU>/mach-<board>.c’.

So the W5300E01-ARM contains hardware dependant routine in ‘arch/arm/mach-

s3c2410/mach-w5300e01.c’.

Previous code is a routine for mapping the physical address of CS2 to virtual address

‘0xf0000000’. The physical address of CS2 is base address of W5300 and W5300 Linux driver

uses mapped virtual address ‘0xf0000000’..

2.4. Interrupt pin configuration
In general, we can use GPIO pin to input, output or especially to interrupt by setting it.

Namely we can use it variously. So we should set the GPIO pin to interrupt mode.

For example, the GPIO pin set to interrupt in the ‘arch/arm/mach-s3c2410/mach-

w5300e01.c’ file which is Linux kernel source of W5300E01-ARM as below.

3. Driver porting
If the system setting is completed in bootloader and Linux kernel, we should do the Linux

driver porting of W5300. The compiling of Linux driver needs Linux kernel code in your system.

This section serves modification of Linux driver code.

static void __init w5300e01_init(void)

{

…

/* W5300 interrupt pin */

s3c2410_gpio_cfgpin(S3C2410_GPF0, S3C2410_GPF0_EINT0);
 …

}

static struct map_desc w5300e01_iodesc[] __initdata = {

 { 0xf0000000, __phys_to_pfn(S3C2410_CS2), SZ_1M, MT_DEVICE },

 { 0xf8000000, __phys_to_pfn(S3C2410_CS3), SZ_1M, MT_DEVICE }

};

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 10 page

3.1. Makefile
Assign the route of Linux kernel code which we using now. Linux kernel code on the route

must be compiled already.

3.2. Base address configuration
Set the virtual address which is assigned from ‘2.3 Base address configuration – Mapping’ to

W5300 driver. And the ‘w5300.h’ of Linux driver code file converts into virtual address which

is mapping to base address of W5300 as below.

3.3. IRQ(Interrupt Request) configuration
Set IRQ number of W5300 interrupt pin to driver. Open the ‘w5300.c’ file of W5300 driver

code and modifies the IRQ number.

3.4. Mac address
In the Linux, it is possible that MAC address of W5300 can active change to ‘ifconfig’ utility.

Basically the MAC address is in the ‘w5300.c’ file.

/* FIXME: Setting basic MAC address / It should be set according to the system. */

const u8 w5300_defmac[MAX_SOCK_NUM] = {0x00, 0x08, 0xDC,
0xA0, 0x00, 0x01};

/* FIXME: Setting irq number / Configurable as module parameter */

static int w5300_irq = IRQ_EINT0;

/* FIXME: This value is dependent on the system. It should be modified according

to system requirement. */

#define W5300_REG_BASE 0xF0000000

Makefile for w5300 linux driver.

linux kernel source path.

KERNELPATH:=/usr/src/linux

build options.

LDFLAGS:=

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 11 page

3.5. Socket Rx/TX buffer
The W5300 has 8 channels from 0 to 7. The channel 0 operates as MAC RAW mode and

supports the operation of conventional MAC chip. And other channels 1~7 support hardware

TCP/IP stack. The W5300 can set the Rx/Tx buffer size of each channel respectively. The total

buffer size is 128 Kbyte. Of course the more buffer size of channel, the better performance.

In the W5300 Linux driver, basic buffer setting is in the ‘w5300.c’ file. The buffer setting is

depended on the specific of its product.

<Note> Since channel 0 using MAC RAW mode activated at the MAC layer, it has many received

packets. So it is strongly recommended that assigns as large size as possible to the Rx buffer

of channel 0.

3.6. Other linux kernel version
The W5300 Linux driver is based on the Linux kernel 2.6.24.4 version which is porting to

W5300E01-ARM. In case of using other Linux kernel, it should be modified some different part

according to its version.

For example, some functions about NAPI (New API) using in W5300 Linux driver are recently

introduced. So in case of using the past Linux kernel version, delete the functions about NAPI

and modify the related routine. The difference of NAPI initialize routine is as below.

/* Initialization Function of W5300 driver */

static int wiz_init(void)

{

…

/* Setting napi. Enabling to process max 16 packets at a time. */

netif_napi_add(dev, &wp->napi, wiz_rx_poll, 16);
…

}

/* FIXME: Configuring the size of basic RX/TX FIFO / It should be configured

according to the system */

const u8 w5300_rxbuf_conf[MAX_SOCK_NUM] = {32, 8, 8, 8, 8, 0, 0, 0};

const u8 w5300_txbuf_conf[MAX_SOCK_NUM] = {32, 8, 8, 8, 8, 0, 0, 0};

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 12 page

In the past Linux kernel uses the previous routine as below

Also the wiz_rx_poll() function use in NAPI is changed as follows. The type of wiz_rx_poll

function which we use now is as follows.

The privious version of poll function type in the Linux kernel is as follows.

4. Quick start – Loopback program
In the hybrid mode of W5300, we can use H/W TCP/IP stack of WIZnet supporting same

performance of conventional network chip simultaneously. In the hybrid mode, the channel 0

conducts as MAC_RAW mode. It is possible to originally use S/W network stack in the Linux

kernel. If we use H/W TCP/IP stack of W5300, just change the socket family at the

application.

Add PF_WIZNET to ‘include/linux/socket.h’ file of Linux kernel as follows.

…

#define AF_RXRPC 33 /* RxRPC sockets */

#define AF_WIZNET 34
#define AF_MAX 35 /* For now.. */
…

#define PF_RXRPC AF_RXRPC

#define PF_WIZNET AF_WIZNET

#define PF_MAX AF_MAX

static int wiz_rx_poll(struct net_device *dev, int *budget);

static int wiz_rx_poll(struct napi_struct *napi, int budget);

/* Initialization Function of W5300 driver */

static int wiz_init(void)

{

…

/* Setting napi. Enabling to process max 16 packets at a time. */

dev->poll = wiz_rx_poll;
dev->weight = 16;
…

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 13 page

Also we should add PF_WIZNET to header file using by application.

Add PF_WIZNET to ‘/usr/include/bits/socket.h’ file.

 If we want use it without PF_WIZNET in the Linux kernel, we use disabled socket family as a

PF_WIZNET by redefinition. Basically default value redefines the PF_BLUETOOTH. We should

modify the driver code of ‘wizsock.c’ file when we want redefinition with other socket family.

A simple loopback example code by using H/W TCP/IP stack as follows

#include <stdio.h>

#include <sys/socket.h>

#include <arpa/inet.h>

unsigned char data_buf[4096];

#ifndef PF_WIZNET

#define PF_WIZNET PF_BLUETOOTH

#endif

int main(int argc, const char *argv[])

{

int sd, fd, addr_len, ret;

struct sockaddr_in sock_in;

…

#define PF_RXRPC 33 /* RxRPC sockets. */

#define PF_WIZNET 34
#define PF_MAX 35 /* For now.. */
…

#define AF_RXRPC PF_RXRPC

#define AF_WIZNET PF_WIZNET
#define AF_MAX PF_MAX

/* If PF_WIZNET is not defined, PF_BLUETOOTH is re-defined as PF_WIZNET.

 * In this case, PF_BLUETOOTH is not in use. */

#ifndef PF_WIZNET

#define PF_WIZNET PF_BLUETOOTH
#endif

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 14 page

struct sockaddr addr;

// socket open

sd = socket(PF_WIZNET, SOCK_STREAM, 0);

// initialize sockaddr

sock_in.sin_family = PF_WIZNET;

sock_in.sin_addr.s_addr = htonl(INADDR_ANY);

sock_in.sin_port = htons(5300);

addr_len = sizeof(addr);

fd = accept(sd, &addr, &addr_len);

// recv & send (loopback)

while(1) {

ret = recv(fd, data_buf, 4096, 0);

if(ret < 0) break;

ret = send(fd, data_buf, ret, 0);

if(ret < 0) break;

}

close(fd); // close socket

return 0;

}

Copyright © WIZnet All Rights Reserved

 W5300 Linux Driver Porting Guide | 15 page

	1. Introduction
	2. System configuration
	2.1. Bus Width configuration
	2.2. Bus access timing configuration
	2.3. Base address configuration - Mapping
	2.4. Interrupt pin configuration

	3. Driver porting
	3.1. Makefile
	3.2. Base address configuration
	3.3. IRQ(Interrupt Request) configuration
	3.4. Mac address
	3.5. Socket Rx/TX buffer
	3.6. Other linux kernel version

	4. Quick start – Loopback program

