

DATA SHEET

SE2431L: 2.4 GHz ZigBee®/802.15.4 Front-End Module

Applications

- Smart Meters
- · In-home appliances
- · Smart thermostats

Features

- Integrated:
 - PA with up to +24 dBm output power
 - LNA with programmable bypass
 - Antenna switching with Tx and Rx diversity function
- Typical low NF: 2 dB
- \bullet Single-ended 50 Ω Tx/Rx RF interface
- \bullet Fast switch on/off time <1 μ s
- Supply operation: 2.0 V to 3.6 V
- Sleep mode current: 0.05 µA typical
- Small QFN (24-pin, 3.0 mm x 4.0 mm x 0.9 mm Nickel-Palladium-gold [NiPdAu] plated) package (MSL1, 260°C per JEDEC J-STD-020)

Skyworks Green[™] products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green* [™], document number SQ04-0074.

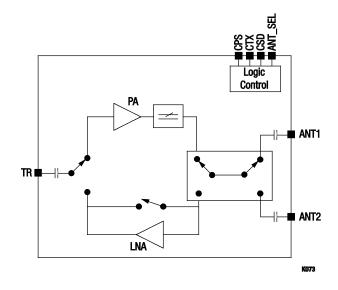


Figure 1. SE2431L Block Diagram

Description

The SE2431L is a high-performance, fully integrated RF Front-End Module (FEM) that is designed for ZigBee®/Smart Energy and 802.15.4 applications.

The SE2431L is designed for ease of use and maximum flexibility, with fully matched 50 Ω input and output, integrated inter-stage matching and harmonic filter, and digital controls that are compatible with 1.6 V to 3.6 V Complementary Metal Oxide Semiconductor (CMOS) levels.

The RF blocks operate over a wide supply voltage range from 2.0 V to 3.6V, which allows the SE2431L to be used in battery-powered applications over a wide spectrum of the battery discharge curve.

A functional block diagram is shown in Figure 1. The pin configuration and package are shown in Figure 2. Signal pin assignments and functional pin descriptions are provided in Table 1.

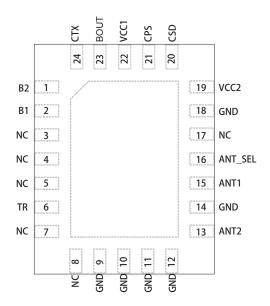


Figure 2. SE2431L Pinout (Top View)

Table 1.SE2431LSignal Descriptions

Pin#	Name	Description	Pin#	Name	Description
1	B2	Connetcthroughhebias resistor pin 23	13	ANT2	Connect t50⊠ antenna
2	B1	Connect throughlebias resistor to pin 23	14	GND	Connect to PCB ground
3	NC	Not connected internally to the device	15	ANT1	Connect to PCB ground
4	NC	Not connected interpretal the device	16	ANT_SEL	Connect to 50 antenna
5	NC	Not connected internally to the device	17	NC	Connect tubeGPIO signal to continual ntenna switch (stee "Logic Controls" table)
6	T/R	Transmit/receive port from/to transceiver, singlænded 50⊠	18	GND	Not connected internally to the device
7	NC	Not connected internally to the device	19	VCC2	Connect to PCB ground
8	NC	Not connected internally to the device	20	CSD	Connect to positive supply
9	GND	Connect to PCB graund	21	CPS	ConnecttotheGPIO signal to contines E2431L modes (see the "LogControls" table)
10	GND	Connect to PCB graund	22	VCC1	Connect tubeGPIO signal to contines E2431L modes (see the "LogControls" table)
11	GND	Connect to PCB ground	23	BOUT	Connectto positive supply
12	GND	Connect to PCB ground	24	СТХ	Connect to pihand 2 throughebias resistors

Table 2.SE2431LAbsolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage	Vcc1	-0.3	3.6	V
Supply voltaĝe	Vc2	-0.3	3.6	V
Control pin voltages		-0.3	3.6	V
Operating temperature	Тор	-40	85	°C
Storage temperature	Tstorage	-40	125	°C
Tx output power at ANT1 or ANT2 port ⊠nloasi0	Pout_Tx_max		+24	dBm
Tx input power at TR port	Pin_Tx_max		+6	dBm
Rx input power \$174 or ANT2 ports	Pin_Rx_max		+5	dBm
Electrostatidischarge: ANT pin: HBMJass1C All other pins: HBMpss1A	ESD		1000 300	V V

Note: Exposure to maximum rating conditions for extechded yperiduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal conditions any of the limits listed here may result in permanent damage to the device.

CAUTIONAlthough this device is designed to be as robust as possible, Electrostatic Discharge (ESD) can damageothis device. The must be protected at all times from ESD. Static charges may easily produce potentials of several kilowolyts on the humor equipment, which can discharge without detectional models.

Table 3. Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Ambiertemperature	TA	-40	+25	+85	°C
Suppl y oltagen VCC pins	V cc1	2.0	3.0	3.6	V
Supply voltage VCC pins	Vc2	2.0	3.0	3.6	V

Electrical and Mechanical Specifications

The state of t**S**€2431lis determined by the logic provided in

The absolute maximum ratings SEP lare provided in Table 2The recommended operating conditions are specified in Table 3 and electrical specifications are provided in Table through

Table 4. SE2431L Electrical Specifications: DC (Note 1) (VCC = 3 V, TA = +25 °C, as Measured on Skyworks SE2431L-EK1 Evaluation Board [De-embedded to the Device], Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Total supply current	lcc_ Tx20	Tx mode $Pout = +20 \text{ dBm}$, $CPS = CSD = CTX = 3.0 \text{ V}$		115		mA
Total supply current	lcc_ Tx17	Tx mode $Pout = +17 \text{ dBm}$, $CPS = CSD = CTX = 3.0 \text{ V}$		90		mA
Total supply current	Icc_ Tx10	Tx mode $Pout = +10 \text{ dBm}$, $CPS = CSD = CTX = 3.0 \text{ V}$		50		mA
Quiescent current	Icq_ Tx	No RF, CPS = CSD = CTX = 3.0 V		30		mA
Total supply current	Icc_ Rx	Rx mode, $CPS = CSD = 3.0 \text{ V}$, $CTX = 0 \text{ V}$		5	7	mA
Total supply current	Icc_ RxBypass	Rx Bypass mode, $CSD = 3.0 \text{ V}$, $CPS = CTX = 0 \text{ V}$			300	μА
Sleep supply current	Icc_ off	No RF, CTX=CPS=CSD = 0 V		0.05	1.0	μA

Note 1: Performance is guaranteed only under the conditions listed in the above Table.

Table 5. SE2431L Electrical Specifications: Logic Characteristics (Note 1) (VCC = 3 V, TA = +25 °C, , as Measured on Skyworks SE2431L-EK1 Evaluation Board [De-embedded to the Device], Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Logic input high voltage	VIH		1.6		3.6	V
Logic input low voltage	VIL		0		0.3	V
Logic input high current	Іін				1	μА
Logic input low current	lıL			2	1	μА

Note 1: Performance is guaranteed only under the conditions listed in the above Table.

Table 6. SE2431L Electrical Specifications: AC Characteristics (Note 1) (VCC = 3 V, TA = +25 °C, as Measured on Skyworks SE2431L-EK1 Evaluation Board [De-embedded to the Device], All Unused Ports Terminated with 50 Ω , Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Transmit (Tx)						
Frequency range	fin		2400		2483	MHz
Output power at ANT1 or ANT2 ports (Notes 2, 3)	Роит	VCC = +3.6 V VCC = +3.3 V VCC = +3.0 V VCC = +2.7 V VCC = +2.0 V		+24.0 +22.5 +21.0 +20.5 +17.0		dBm
Small signal gain	S21	2400 MHz to 2483 MHz	19	22	25	dB
Small signal gain variation (Note 2)	ΔS21	Gain variation across all ZigBee channels			1	dBp-p
Harmonics (Notes 2, 4)	HD2, HD3	Pουτ = +20 dBm		-10	-42	dBm/MHz
Output return loss (Note 2)	S22_ANT	At ANT1 or ANT2 ports		-10	- 5	dB
Input return loss (Note 2)	S11	At TR port, Tx mode			- 5	dB
Spectral mask (Notes 2, 5)	ACP				-30	dBm
Rise and fall times	tr (Note 6) tr (Note 7)				800	ns
Stability	STAB	CW, PIN = 0 dBm 0.1 GHz to 20.0 GHz Load VSWR = 6:1	All non-harmonically related outputs <-42.0 dBm/MHz			
Ruggedness	Ru	CW, PIN = +6 dBm, Load VSWR = 10:1	No permanent damage			
Receive (Rx)						
Frequency range	fin		2400		2483	MHz
Receive gain (Note 2)	Rx_gain	CPS = CSD = Logic 1, CTX = Logic 0	10.0	12.5	15.0	dB
Receive Noise Figure (Note 2)	NF	CPS = CSD = Logic 1, CTX = Logic 0		2.0	2.5	dB
3 rd Order Input Intercept (Note 2)	IIP3	CPS = CSD = Logic 1, CTX = Logic 0	-3	+2		dBm
1 dB Input Compression Point (Note 2)	IP1dB	CPS = CSD = Logic 1, CTX = Logic 0	-13	-8		dBm
Antenna port return loss (Note 2)	S _{11_ANT}			-10	-5	dB
Output return loss (Note 2)	S22	At TR port, Rx mode		-10	- 5	dB
Rise and fall times	tr (Note 6) tr (Note 7)				800	ns
Interferer amplitude (maximum 2.4 GHz)	G_вр	CPS = CTX = Logic 0, CSD = Logic 1	-3	-2		dB
1 dB Input Compression Point	IP1dB	CPS = CTX = Logic 0, CSD = Logic 1	+10			dBm

Note 1: Performance is guaranteed only under the conditions listed in the above Table.

Note 2: 2400 MHz to 2483 MHz.

Note 3: Offset EVM = 1% typical.

Note 4: IEEE 802.15.4 source.

Note 5: Integrated power from the band edges to Fc \pm 3.5 MHz.

Note 6: From 50% of the CTX edge to 90% of the final RF output power.

Note 7: From 50% of the CTX edge to 10% of the final RF output power.

Table 7. SE2431L Electrical Specifications: AC Characteristics, Diversity Antenna Function (Note 1) (Vcc1 = Vcc2 = 3 V, TA = +25 °C, as Measured on Skyworks SE2432L-EK1 Evaluation Board [De-embedded to the Device], All Unused Ports Terminated with 50 Ω , Unless Otherwise Noted)

Parameter	Symbol	Min	Typical	Max	Units
Isolation between ANT1 and ANT2 ports	ISOLANTSW		-20		dB
Antenna 1 to antenna 2 switching time	tant1-ant2		400		ns

Note 1: Performance is guaranteed only under the conditions listed in the above Table.

Table 8. SE2431L Logic Controls

(Vcc = 3 V, TA = +25 °C, Unless Otherwise Noted)

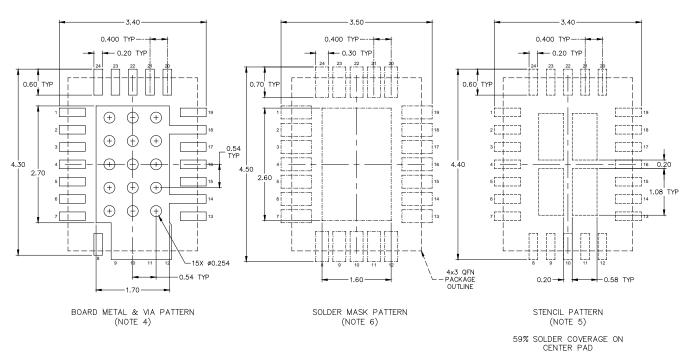
Mode	Description	CPS	CSD	СТХ	ANT_SEL
0	All off (sleep mode) (Notes 1, 2)	0	0	0	Х
1	Rx Bypass mode (Notes 1, 3)	0	1	0	Х
2	Rx LNA mode (Notes 1, 3)	1	1	0	Х
3	Tx mode (Notes 1, 3)	Х	1	1	Х
	ANT1 port enabled (Note 1)	Х	Х	Х	Х
	ANT2 port enabled (Note 3)	Х	Х	Х	Х

Note 1: Logic 0 level is compliant to V_{IL} as specified in the "Logic Characteristics" Table.

Note 2: All controls must be at logic 0 to achieve the specified sleep current.

Note 3: Logic 1 level is compliant to ViH as specified in the "Logic Characteristics" Table.

Package Dimensions


The PCB layout footprint for the SE2431L is provided in Figure 3. Branding information is shown in Figure 4. Package dimensions are shown in Figure 5, and tape and reel dimensions are provided in Figure 6.

Package and Handling Information

Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperatures during solder assembly.

The SE2431L is rated to Moisture Sensitivity Level 1 (MSL1) at 260 °C, and can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

NOTES:

- ALL DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONING AND TOLERANCING PER ASME Y14.5M—1994.
 UNLESS SPECIFIED DIMENSIONINS ARE SYMMETRICAL ABOUT CENTER LINES.
 VA HOLE RECOMMENDATIONS: 30-35um Cu VIA WALL PLATING, VIA HOLES SHOULD BE TENTED WITH SOLDER MASK ON THE BACKSIDE AND FILLED WITH SOLDER.
 STENCIL RECOMMENDATIONS: 0.125mm STENCIL THICKNESS, LASER CUT APERTURES, TRAPEZODIAL WALLS AND ROUNDED CORNERS WILL OFFER BETTER PASTE RELEASE.
 SOLDER MASK RECOMMENDATIONS: CONTACT BOARD FABRIACTOR FOR RECOMMENDED SOLDER MASK OFFSET AND TOLERANCE.

Figure 3. PCB Layout Footprint

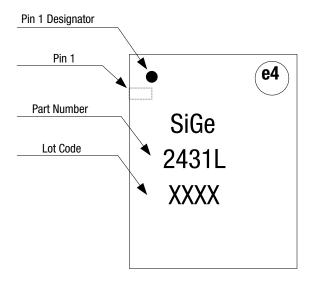


Figure 4. SE2431L Typical Part Marking

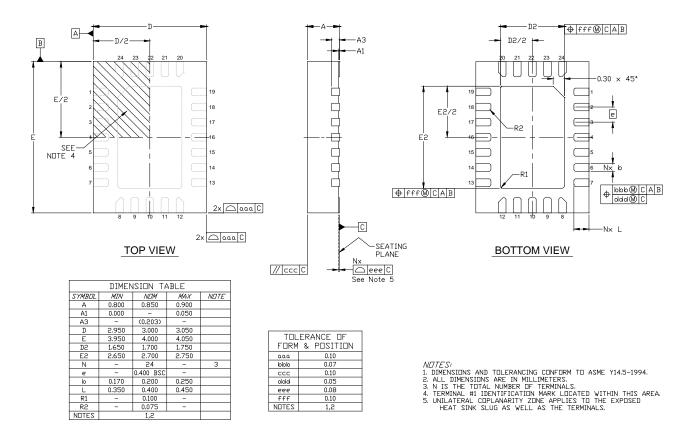


Figure 5. SE2431L Package Dimensions

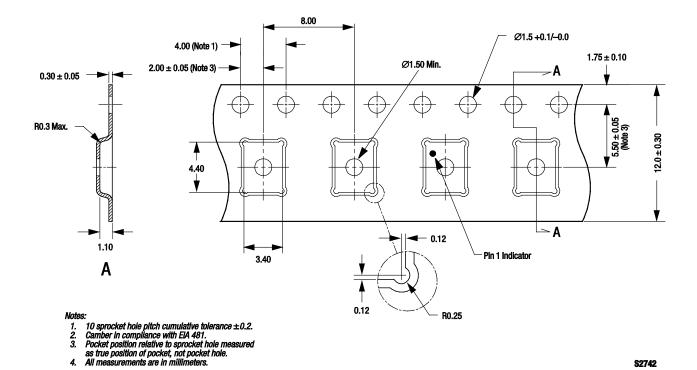


Figure 6. SE2431L-R Tape and Reel Dimensions

S2742

Ordering Information

Table 9. SE2431L Ordering Information

Model Name	Manufacturing Part Number	Evaluation Board Part Number
SE2431L: 2.4 GHz ZigBee/802.15.4 Front-End Module	SE2431L	SE2431L-EK1

Copyright © 2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.