PRODUCT MANUAL

ynamic C

Integrated C Development System
For Rabbit Microprocessors

Function Reference
Manual

019-0113_N

Dynamic C Function Reference Manual
Part Number 019-0113 « Printed in U.S.A.

Digi International Inc.© 2007-2010 « All rights reserved.

Digi International Inc reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
RabbitSys™ is a trademark of Digi International Inc.

Rabbit and Dynamic C®are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation

The latest revision of this manual is available at www.rabbit.com.

http://www.rabbit.com/docs/

PRODUCT MANUAL

Table of Contents

Alphabetical Listing of Dynamic C Functions v
Group Listing of Dynamic C Functions XV
Chapter 1: Function Descriptions 1
Software License Agreement 557

Dynamic C Function Reference rabbit.com iii

rabbit.com

http://www.rabbit.com

RABBIT. o=

PRODUCT MANUAL

Alphabetical Listing of Dynamic C Functions

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Symbols ChKSOTERESEL vvvvvvriiiieeeeeeeeerties s e e eeereeerrrnns 25
ChKWDTO i 26
_GetSysMacrolndexovvvvevieeineieinneeieeennnnn 178 clockDoublerOff oo 27
_GetSySMacroValueeveeeeeeeeeiiiivrieeeeeeennnns 179 clockDOUbIEerON oo 27
_SYSISSOFtRESET ..vuvuverernrnririrnnnnnnnnnnnnnnnnnnnnnnns 517 CloselnpUtCOMPreSSedFilevveevrvrererrerenens. 28
CXAHOC wviiiiiieee 542 CloseOutputCOMPressedFilecoovveevrereersrenns 28
CXAVA] e 545 COBEGIN «.vrveveeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeneseeeseeeenas 29
A COT_PKEATECRIVE 1vvvvreieiiiiiiiiirieieee e e s iisrareeeeeeas 29
COT_PKEASENG .vvvvrveiieieeiiiiiiiirieieee e s siinrreeee e 30
ADS vt 2 COf_PKIBIECRIVE .v.veviriviniisiiisiei s 29
ere YT 2 COF_PKIBSENM ..ovvveviiiiiieiisee s 30
ACOT cvveteee et e e s ees st e ettt e st r et n st r s 3 COf_PKICTECRIVE vvuvevirieiiniieiiisiei e 29
L AT 3 COf_PKICSENM .vovvveiiiiiiieiisc s 30
AESAECTYPUXA ooveveeeeeeeeeeeeeeeeeeeese e eeen e, 4 COT_PKEDIECRIVE .vvvrereeeeeiiciiriieeeee e e e e eeerineee e 29
AESecryptStream4xd_CBCc.cvvveveveeerresrann, 5 COT_PKEDSENG ..vvvvvrieeeeeeieiiiiiieeeee e e e e seierveeee e 30
AESENCIYPUXA ooveeeeeeeeeeeeeeeeeeeeeeseeeseeeneeenen, 6 COT_PKEEIECRIVE wvvvvrereeeeeeiciiriieeeee e e e e seivieeee e 29
AESeNcryptStream4x4_CBCc.cvvveveveeerreenann, 7 COT_PKEESENG ..vvvvrreeeeeeeeeiiiirieeeee e e e e seevvneee e 30
AESEXPANAKEYZveeeveeeeeeeeeeeeee s e e eeseeen, 8 COT_PKEFIECEIVE wuvvvrrrieeeiiiciiiiieeee e e e eeivieeee e 29
AESINItSUEAMAXE oo 9 COT_PKEFSENd ...vvvviieeeeeeiiiiiiiiee e e e e e eeivieeee e 30
ASEC oo 10 COT_SEIAQELC ..vvvrriiieeeeee e ettt e e e e 31
ASIN oo 10 COT_SEIAQELS ..vvviriiieeeee e e it e e e e e 32
AN oo 11 COT_SEIAPULC ..vvvvviieeeeee e ettt e e e 33
AAND oo 12 COT_SEIAPULS ...vvvvrieeeeeeeeecitiiee e e e e e e e eerrreeee e 34
AOF oo 13 COF _SEIAAd .oooeveeiieiiieie e 35
AON oo 14 COF SEIAWIILE .ooeeviiiiiii i, 36
A0l oo 15 COT_SEIBOEIC ..vvvrrriireeeeeiiiiitiieeeee e e e e senevvneee e 31
COF_SEIBUELS wvvvevirirrireeiiriieessiiieeesineeeesssnneeas 32
B COF_SEIBPULC ©vvvveivirieeeiiiiieessivieeessineeeessnsaeeas 33
BIT cooeeeeeeeeeeeeeee et eeee et s e e ee e 17 COF_SEBPULS ..ovvvvvvrenvvcns i 34
DAL v v eeeeseee e e ee e es e ee e 16 SoserBreal .o 35
BIRAPOME ...vvvovveeeeeseeeeeeeesseeeeseeeeeesereeseeens 18 COMSErBWIIE oo 36
. COF_SEICUEIC wvvveeiiirieeeeitiieeeectree e e eeiree e e e eaeeas 31
BitRAPOIE] ©uvvvvieiiiiiiiiiiiiiiiniririsiiiriiaranarasanananes 19 £ cercaet 32
BIWIPOIEeoeeeeeeeeeeeeeeeeeeerenes e 20 COTSETLGELS wovvvrrmsmmsmmssissssss s
BIOWIPOM vveooveeoeeeeeeee e 21 COFSEIOPUIC oo 33
COF_SEICPULS wvvveeiievrieeeiiiiieessiiieeessinneeessnneeas 34
C COf_SErCreadcovvrvvriiniiniiieiie e 35
COT_SEICWIILE ..vvvvveieeeeeeeiiciiiiee e e e e e e ceireeeee e 36
CalculateECC256ovvvriviiiiiiiieie i 22 COF_SEIDYLIC vevvveivreeiriesieesieesreesieesre e e e 31
COIl e 24 COT_SEIDQELS ..oevniieniieieee e 32
ChKCOrreCtECC256oovvvveiiisiiieiie i 23 COT_SEIDPULC ©.vvveeeveeiriesiveesiee e e sieesire e 33
ChKHardReSetuviiiiiiiieieei e 25 COT_SEIDPULS ..vvvrrrreeeeeeeeeiirtrreeeee e e e s searrrneeeeeas 34
Dynamic C Functions rabbit.com

http://www.rabbit.com
http://www.rabbit.com/products/dc/

(oo 14 D £ (¢ T 35 errlogFOrMAatENTIY vovvveeeiiviiiirieieee e sirireeee e, 71
COT_SEIDWIIE .vvvvvrierieeiiiiiiiriree e e e e s ssnrbreee e 36 errlogFormatRegDUMP ...occvvvveeeeeeeniiiiirieeenean 72
(o0 =10 11 O 31 errlogFormatStackDUMPvvvvveeeeeeeniiiiinnneeenenn. 72
COT_SEIEQELS vvvrrrieiieeiiiiiiirireeee e e s s ssinrreeeeeees 32 errlogGetHeaderInfoccovvvveeeeeeeiiiiinivneenenn. 70
(o0 1 = 010 | (RO 33 ITIOgGELMESSAE vvvvvieeiiiiirrrrreieeeeessiiisrrrreeneeas 73
COT_SEIEPULS .vvvvrreieeieeiiiiiirirreeeeeesssisnrreeeneeas 34 errlogGetNINENTTY .ovvevviviviiiiieiiee e sisiireeee e, 71
(o0 1 = (Y- 1o RO 35 errlogReadHeaderceevvvveveeeeeiiiiiiiinnennenn. 73
COT_SEBIEWIILE ©uvvvvvvieeieeiiiiiiirireeee e e s s ssinrreeee e 36 BITOT_IMESSATE «vvvvrrrerreeesiiirrrrrereeeessssisrrssenees 74
(o0 I a0 (oSO 31 EXCEPLION 1oeeiiieirrreiee e e e i s e e e s ssabb b 75
(o0 e a0 < OO 32 (1 TS 76
(o0 1 01V (O 33 BXP trrrretteeet i i 76
COT_SEIFPULS .vvvrrreieeeeeiiiiiiirireeee e e s s ssibrrreee e 34
(o0 1 =0 o RO 35 F
COT_SETFWIIE ..o 36 FADS ©oeeeiiriee et 77
COMPesSFile ... 37 fat_ AULOMOUNE ©.vvvvvviereeeiiiiirireee e e e s sisbreee e 78
COPAUSE ..ovvvviiiiniiniis 38 AL CIOSE veveeeiireeeeeiiie e e e cttee e e et e et 81
CORBSEL ..o, 38 fat_CreateDireceecvuveeeeeireeeeeiieeeeeeiireeee e 82
CORBSUME ..ot 39 fat_CreateFilecceovuveeeeiiieeeeeiiieee e e 83
COS wovrrrrmnrsirns s 40 fat_CreateTime ..oeeevvvveeeeeiieeeeeciieeeeeivee e e 84
COSR ot 40 At DEIELE .oeeevvveeeeeeiiiee e e et e 85
D fat_ENUMDEVICE ..vvvvrereeeeeiiiiiiiieeeeeeesesineneeens 86
fat_EnumPArtitioncecevvveeeieeeisiiiinnenen. 87
DEeCOMPIESSFIlE ...vvvieeiiiieeeeiiiee et e e e 41 fat_FileSize ...cvvevviiiiiie it 88
defineErrorHandlerccovvvveeeeeeeviiiivvveeenenn. 42 fat_FOrmatDeVICecccovvcvvrieeeeeeenniiiivnneeean 89
UBY vttt 43 fat_FormatPartitioncccceeevrvveeessineneennnnn 90
DEIAYMS ..vvvveeiiiiiiie ettt e et 43 AL FTEE vvvvee ittt 91
DEIAYSEC .vvvvreeeiiiieeeeitiee e e e cttre e e e etre e e e eraee e 44 L B C L1V AN | PRSP 92
DEIAYTICKS tvvreeeirireeeiiiieeeeeiireeeesreeeeesiseneeeans 45 fat_GEtNAME ..vvvveeiiieiee et 93
Disable HW_WDTcccciieeeieeeiiiiiinieeeeeeeens 45 fat_GetPartitionccccceevvevviuiirereeeeesisinnnneeen 94
DMAGIIOC evvvviiiiiiiiiiiiiiiieiee e a7 7V [U 95
DMACOMPIELED ...vvveeeeiiieeeeiiieeeecrieeeeeeiieeee s 48 fat_INItUCOSMULEX ..vvvverieirieeeiiiiieessireeee e 96
DMAhandIe2chanccccveeeeeeeeiiiiiiiiieneeeeennn 49 fat_ISCIOSEdcccuvvveieeeeeeeccciiieee e e 97
DMAI0E2MEM ..vvvveeiiiiieeessivieeessbreeessnineeeenns 50 At _ISOPEN 1ovvveieeieeiiiiie et 98
DMAOI2ZIMEM 1vvviiiiiiiiiiiriiiie e s e e 52 fal_LASACCESS ..uvvvrvrrreeeeeiiiirrneeeeeeesssnnnnnneneens 99
DMAI0AABUFDESCccvvvvvreeeeeeeesiiiieeeeeeaeeenns 53 fat_LastWIitecccvveeeeeeeeeeiiirieeeee e e e 100
DMAMALCNSELUP vvveeveiveiriieereeeeesiniiiineeeeeeennans 54 fat_MountPartitioncccoeeevvvveereeeensinnnnne 101
DMAMEM2I08 ..vvvveeeirrreeessirrneesssneeessnseneeeans 55 FAt_OPEN weveeeiirieeeeciee e e 102
DMAMEM2I0i +vvvveeeiivreeessiireeesssneeessnsnneeeans 56 fat_OPENDIT covvvvveeeeciieee e 104
DMAMEM2MEM eveeeiiiierriniereeeesssnsrrenneeeeesssans 57 fat_PartitionDEVICEcvvvveeviiiciiiiieiieeees i 105
D1V A o o] | PO PPRPTPR 58 fat_REAA .vvvveiiivieeeeciiee e et e e 106
DMADINBUFDESC vvvevvvveeeeiiireeeeivieeeesiineeeans 59 fat_REAADIT .ovvvveeiiiieeeeciiree e e eiee e siaeee e 107
DMADINREYS ..vvvvveeeiiiieeesiiieeeessreeessnseneeeans 60 AL SEEK wvvvveiiiiiieesiiiie e et 109
DMASEIBUFDESC ..vvvveeinvvreeeiiiireeeesireeessnseneeeans 61 At SELALT ©evvivvieeeeciiee e e et e e s s e e e erree e 111
DMASEIDIIECT ..vvvveeeiiiieeeesitieeessireeessnieaeeeans 62 At SPHE ©vvveeeiirieeeesiiie s 112
DMASELPArAMELErS oevvvvveeesivreeeeirreeessnseeneeans 63 At StAtUS .vvvvvvreeeesiiiieeeesire e e s s e e e e erreee e 113
DMASEAMAULD ..vvvveeeiirreeessiiieeesssreeeesnsnneeeans 64 fat_SYNCFIlE ..vvvveee et 114
DMASLAMDIIECE vvvvveesiieeirieiereeeessssiiiiieeeeeeesnens 65 fat_SyncPartitionccccccovevvvvvennieeeiniiinnnne 115
DIMASEOP .vvvveeeiurreeeesnreeeeanssresesssseeessnsneeeeans 66 21) | PSRRI 116
DMASEOPDITECE .vvvveeeiiireeeesiiieeeesireeeessieneeeans 67 AL tICK vvvveeeiiieie e s s s e 117
DMALIMEISEIUD vvvvreeierreeessireeeesrreeessnnnneeeans 67 Fat_TIUNCALE «vvvveeeeevieeeecciree e e e e e e eiaee e 118
DMAUNAIIOC .oeeiivieeeeiiiiee et 68 fat_UNMOUNDEVICE ..vvvveevvvveeeriiiieeesiiienenans 119
fat_UnmountPartitionccccceevvvereriivnnennns 120
E FAL WIIE ©eveeiiiiiee et 121
enablelobUS. o 69 fat XREAUocvveeeeiiieeeecciieee e et 122,123
Vi rabbit.com Dynamic C Functions

http://www.rabbit.com

FAl XWIEE ooveiviiiiiiieiie et sanrees 124 G
1{o] [0 - PP 125
FOLEALE oo 126 get_cpu_frequenty ..o.cooovecvieeeeeeee e, 176
FOFEALE (FS2) wrvverererrereeeeseseeeeseseesesesssseseeneees 127 QEICNAN .oiieeii it e e 175
FOTRALE._UNUSEA v.vevereereeeeeeseeseseeseesesesseseeens. 128 GEICIC wvvrvrnvrnrinitnsn s 176
foreate_UnUSEd (FS2) wevvverererereeeeseeeeseseenenes 129 ge:d|V|der19200 ... g;
FUCIOTE oo 130 JEIS ittt
FARIEE (FS2) vvrvvrrerreeeeeeeeeseeseseeseesesesseeneenn. 131 GetVeCtEXern2000cccvvveereeeesiiinvreennnnns 180
FFIUSN (FS2) +vreeereeeeeeeeeeseseesesseseesesesseeeeenn. 132 GetVeCtEXtErn3000cccvvveeeeeeesiiinrreennnns 181
FFEOPIX . veeveverereeeeseeseeseseeeeseesessseeseseeseeneeene. 133 GEtVECLINIEIN wvvvvvieiieeeiiiiiirieee e e s seibrbreee e 182
FFOPIXINV cvovevereeeeeeeeeeeeeeeeseeseseeseeseseeseeeeeen. 134 gPS_QGEt_POSITION ...vvvveeeeeiieeeeecireeeeeireee e %gg
N 135 OPS_EL UIC wvveerrreeireeeiieeeitreeeerreeeiveeesneeens
FEAlINY oo 136 gps_ground_distanCececevvvveeeeiiveeeennnes 183
flash_eraseChip ...covvvveeeeeeiiiiiiiiirieeeeeee s iinnenes 137
flash_eraseseCtor ...uvvveerieeeiiiiiivrrieeeeeeessiinnens 138 H
flash_gettypeccoveeviiiiiiiiiiiiiiccn, 139 RANNCPIX vt eeee e eeeeeee e e e e e e eee e, 184
flash_init ...ooevviei 140 NANNTCAL oo 185
flash_readcoevvvvveeieeeiiiiiiiirree e 141 HDLCADOME oo 186
flash_readSectorvvvveeveeeeiiiiiirrieeeeeeensiinnenes 142 HDLCADOME oo 186
flash_SeCtor2XWindowccevvvveveeeeeriiiinnnnes 143 HDLCCIOSEE oo 186
flash_WITESECION .uvvvvveirieeeiiiiiiririeeeee e e s s siaarenes 144 HDLCCIOSEF oo 186
FlOOr oo, ﬂg HDLCAIOPE ...vveveeirirrieeieieiesesieieies 187
fMod .o HDLCAIOPF ...ovvevee e e e e e s sveee e 187
fopen_rd (FS1) ..ocoovvviiiiiiiiiiiiicc, 146 HDLCerroprE ... 187
fopen_rd (FS2) ...ccovvviiiiiiiiiiiiiicc 147 HDLCEITOIF w.veveveeeeeeeeeeeeeeeereenseeeeessnen s 187
fOPEN_WI .oviiiiic %ig HDLCEXICIOCKE v.vvveveeeeeeeeeeeeeeneeeeseeeeeneeens 188
fopen_wr (FS2) ..o HDLCEXICIOCKF .vvevivvieeeeeiviieeeeteeeessereenee s 188
fOrCESORESELcvvviiicici %gg HDLCOPENE ..vvvvvrcececieie e 189
fread ..o HDLCOPENF .vvvieiiieeccviee et e eteeesvee e 189
fread (FS2) ...oooviveiiiiiiiiiiiice %g% HDLCPEEKE .vvvveeeeeeeeeeeeseeeeenreeeneeanen e 190
FEXD o HDLCPEEKF .vvveeeeeciiiie et eeee e s sveen e 190
fs_format (FS1)coeviviiiniiiiiiiiiccn, 153 HDLCFeceiveE .. 191
fs_format (FS2)coovvvviiiiiiiiiiiicn, 154 HDLCIECEIVEF .vvvvveeeeveeeeeeereeereeneeseseeseeeneeens 191
fs_get_flash_IX (FS2) ..cooveiiiiriiiiiiiiiiiiiinn, 160 HDLCSENAE .vevvveveeeeeeeeeeeeeeeeeneeeeeeesnen e 192
fs_get IX (FS2) oovvviviiiiiiiiiiciicc 161 HDLCSENAF vt eeeeeeeeeee e eee e eneen s 192
fs_get_IX_Size (FS2) .oovvieiiiiiiiiiiiiiciciina,s 162 HDLCSENAINGE +..vveeveveeeeeeereeeeeeeseeeeeeeeeneeens 193
fs_get_other_IX (FS2)cccoovviiiviiiiiiiiiiiinn, 163 HDLCSENAINGF +..vveeeeveeeeeeeeeeeeeeneeeeseeeeen e 193
fs_get_ram_IX (FS2)ccovevviiiiiiiiniiiiiiiinn,s 164 REXSITTODYLE ..vvveeeeeeeeeveeeeeeeeereseseeseenreeeens 193
fs_iNit (FS1) vovevviveiiiiiiiee 155 PO vt ee e e e e e, 194
fs_init (FS2) .oovvviiiiiii 156 110 194
fs_reserve_blocks (FS1)oovvvvveeereeeniiiinnnne, 157
£S_SELIX (FS2) vrverrreeeerereenseeeesseesreaeessnens 165 |
fS_SEUP (FS2) vvvvvrrrriiieieiiiiiiriiriee e e s siannens 166 .
S _SYNC (FS2) civivvrrriiiieie i e e ssnnees 168 12C_Check_aCK wo.vvoevvessssnensseninse 206
FSOK voveemerseersseoe e 157 20N s 207
12C_read _Charooovvvveeiiee i 207
SEEK (FSL) toviviivirrriiiieieiiiiiirirrree s e e e e s sanrens 158 i 4 ack 508
FSEEK (FS2) wervrrereereereseesesesseesessessessesseeseeees 159 12C_SENT_ACK vvvvrvursrssmsnssnssss e
T 171 12088NANAK s 208
frell (FS1) 169 T2C_SEAM X vvvvrvreriiiiiirrrenieeeessiiirrrreeneeeessens 209
"""""""""""""""""""""""""""""" 12C_SArW_tX .ovevvviiiiriiineeeeiniiinnreneeee s 240
FEEI (FS2) wvvreereeeeeeeseeeeeeeeeeeeeseseeeseeeeneneeen. 170 :
FOB oooesssere oo 175 12CSOP DX o 211
FWEite (FS1) oo 173 12C_WIE_ChET vvvvviiiiciiirieeiie e 211
fwrite (FS2) 174 INEEIVAIMS oeeoiiiiiiiiiie e 195
"""""""""""""""""""""""""" INEErVAISECcvvvverrrriieieeeeiiiiirireeeee e nsnnnnnn 195
INEENVAITICK voovviiviiiiiiie e 196
Dynamic C Functions rabbit.com vii

http://www.rabbit.com

TPTES tiiiiiiiiiitrie e 196 MEMCAE coiiitiriee e 237
IPSEE 1eveiiiiiiirrie et 197 MEIMCITIP 1vvvrrreeeeeeesiiirrrreeeseeesssssbrrereeeessnns 238
ISAINUM oo 197 IMEIMICPY 1vvvrrrreeeeeeesiiisrrreeereeessissrrrereeeessnins 239
1SAIPNA ooiviirriiiei e 198 MEIMMOVE ©.vvvrvieeeeeesiiiirrreeeseeesssssrsreeeseessnins 240
133111 P 198 MEMSEL 1eeiitieeeeiiiee e e e etrr e e e ere e e e e e e e s eaneeas 241
ISCODONE .vvvveeeiiiieeeecitre e e e sttee e e e rrere e e e eaneeas 199 MKEME oeeiiiiiee e e e 242
ISCORUNNING tvvvvviieeiiiiiiriieeeee e siiirrieeeeeeesnns 199 MKEM e 243
10 [T | OO 200 10101 | OO 244
ISGIAPN coiviirireiei e 201
ISIOWET ©eeiiiiiee e et e e 201 N
ISPIINE cocniniciin 202 NF_raseBIOCK ..cooveevviicviriiiiieece it e e 245
ISPUNCE Locvnnieniensniiniisneninsieene 203 Nf_getPageCouNtcccvveeeeviuveeeeeiiieeeeeenneeen. 246
ISSPACE wvvoverrnrniisisss s 202 Nf_getPageSIZe ...cvvveeeeeiieeeeeciee e et 247
ISUPPET v 204 NF_INIDEVICE 1vvvviieiiiiiiiiiiei et 248
ISXAIGIL oo, 204 NF_INIEDIIVEL wvvveiiieiiiiciieiei e 250
L R R e R R R RO R 205 Nf_iSBUSYRBHWccoovviieeiiiiieee e 251
K NF_ISBUSYSLALUS .vvvvveeivvriieeiirieeessineeesssnneas 252
NF_reAdPAGE .vvvvvvvrieeeiiiiiie s eiiee e e 253
KON v 212 NF_WIEPAGE ©vvvvivveieeeiiiiie ettt 254
L N XD _DELECT vevvvreeeiiciiiiieeeeeeescerrine e e e e e 255
1ADS .vveeee et e e 212 ©
TUEXP veeeiiiiiirriie et 213 OpenlnputCompressedFileuvvveeeeiiiiirvveennne.. 256
1o OO PPPPPUPRP 213 OpenOutputCompressedFilecoeevvvvveeee.. 257
10G_CIBAN ©.vvvvviieeeeeeeiiiiirreee e e e e s sirrrree e e 214 OS_ENTER_CRITICAL .ccvvvveeeeeeeeiicrrvreeeenn. 258
10G_ClOSE .vvvvrrieeeeeeeiiiirrree e e e e e s sirrrree e e e e 215 OS_EXIT_CRITICAL ..oovcvvvrreeeeeeeeeecivvreeeeen. 258
10g_CONAITION 1vvvvvreeiiiiiirrrreeeee e e s irirriee e e e e e e 216 OSFIAGACCEPT wvvvvrereeeeeiiiiirrireeeeeee s eirrrreeeeeas 259
10g_FOrMAL uvvvvrereeeeiiiiiirrree e e e 217 OSFIagCIEate ..vvvvveeeeeeeiiiiirrrreeeeeeesssinrrneneeens 261
100 MAP coivvrrreeeee ettt 218 OSFIAgDEl ...vvrireeieeee et 262
100 NEXE vovvuvrrrieeeeeeisiiirrree e e e e e s s inrrrree e e e e e s 219 OSFIagPeNdvvvvveeeeeeeiiiiirireeee e e e seinrrneeeeeas 263
100 OPEN evvrreeeiee e e s ittt e s bbb 220 OSFIagPOSE ...vvvrvreeeeeeeiiiiirireeeeeeessesrrrreeeeeas 265
100 _PIEY vvvuvrrrieeeeeesiiiirrree e e e e e s s sarrree e e e e e s e 221 OSFIagQUETY evvrvreeeeeeeiiiiitrrreeeeeeeeseinrnseneeeas 266
100 PUL coveiiiiriee e e sttt srrrree e e 222 (0] (111 PP TOPPPP 267
100 SEEK 1vvvvrrrieeeeeeiiiiitrrie e e e e e s inrrrre e 223 OSMDBOXACCEDE ©vvverereeeriiiirrrereeeeeeeniisrrrneeeess 267
10010 1oeiiiiiirirriee e 224 OSMDBOXCIEALE wvvvverereeesiiirrrreeeeeesssessrrreeeeens 268
TONGIMP oottt 224 OSMDBOXDEI ...evvrvreeieeeeiiiiirireeee e e seirrrreee s 269
100PNEAT ..vvvviieiiee e i 225 OSMDBOXPENT ..vvvvreieeeeeiiiinrireeee e e e e seirrrreeeees 270
T0OPINIE +ovivvrrriee e 225 OSMDBOXPOSE «.evvvvreeeeeeeiiiiirireeeeeeessessrrseeeeens 271
o] SO P PP PPUPPP 226 OSMDBOXPOSIOPE 1vvvvereeeiiiiirireeeeeeeessiinrnreneeess 272
10T RO PPPPURPP 226 OSMDBOXQUETY wvvvreeeeeeeiiiinrrreeeeeessssisrrseeeeens 273
170 U [P 227 OSMEMCIEALE .eeeiuvvreeeeenrrereeeirreeeeannneeeeennens 274
DG (0] 1111 AU OPPPPPUPPR 228 OSMEMGEL .vvvvrireeieeeeiiiiirrree e e e e s rrrreee e 275
OSMEMPUL ...vvveeeiiiiee e et e e et e e naee e e 276
M OSMEMQUETY vvrvrereeeeeiiiiinrrreeeeeesssesssrseeeeens 277
MbE_CreatePartitionovvveeevvresssressre 299 OSMULEXACCEPL 1vvevrreeeiiiiirrrreereeesssisrnrneeeess 278
MDE_ENUMDEVICE +.vvvvevrereereeessreeseseessere 230 OSMULEXCIEALE v.vvvvereesvreeeeesrreeeesinseneeennns 279
MDE_FOrMADEVICE «.vvoveeveverreresreeseesesseereesens. 231 OSMULEXDEI ..vviveiiiiei e e 280
Mbr_MOUNEPAItIIONcveveveerieeeiesiees i, 232 OSMUEEXPENG ..o 281
Mbr_UNMOUNPArtitioncoeveveevsvernrennenns, 233 OSMUEXPOSE ..o 282
mbr_Va“datePartitions 234 OSMUtEXQUEry ''''''''''''''''''''''''''''' 283
mds_append ... 235 OSQACCGpt """"""""""""""""""""""""" 284
MAS_FINISH +eveveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeens 236 OSQCreatecovvvvvriiiiiiiiiiniii i 285
MAS_ N cevevrere et eee e et e eese e ee e e e eeerens 235 OSQDEI ..viiiiiiiiiie i 286
OSQFIUSN .. 287
viii rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPENG ..ovvvvrrieeiieeeisiirrrer e sebrbreee s 288 PFTEE_TASt uvvvvviriieiiiiiiiiriie e 330
OSQPOSE .coviiirrireiiee et 289 PAWIM ittt 331
OSQPOSIFIONT wvvvveeiieeeiiiiiirieeeeeeessseirrreeeeees 290 PKEACIOSE ©evvvvieriieeiiiiitiiriieeie e s iiibriee e e e 332
(01570 20151 (0] | AT 291 PKEAGEIEITONS 1vvviiieiiiiiriiiriee e e s iiirriee e e e e 332
OSQQUENY ..verirriiiiieeeisiirrrrre e e s ssabrraeee s 292 PKEAINIIBUTTEIS .vveiiiviiiriiiiie i 333
OSSCNEALOCK wvvvvvriieeeiiiiiriieeeeeeeesisinrreeeeens 293 PKEIAOPEN evvvriiiiieeiiiiiiiirieee e e s s siirriee e e e e 334
0SSChedUNIOCK vvvvvveeeviiiiriiieieeeeesiiiriieeeeee 293 PKEATECEIVE 11vvvriiieiiiiiriiiiieeeee s iiiiriee e e e e e 336
OSSEMACCEPE wvvvveeiieeeiiiiiiireeeee e s inirrrreeeeees 294 PKEASEND ©.vvvvviieiiee it 337
OSSEMCIEALE .vvvvvvrereeeriiiirrrrreeeeessisirrreeeeeeas 295 PKEASENAING 1vvvvriieeiiiiiriiriiee e 338
OSSEMPEN ..vvvvriiiiieeeiiiiiriee e 295 PKEASEIPAITLY vvvvvveeiiiiiriirreieeeeeisiiirrieeeeeessnns 338
OSSEMPOSE 1.vvvvrrreieieeeiiiiirire e s ssrbrraee e 296 PKIBCIOSE .uvvvvviriieeiiiiiiiiriieie e s siiibriee e e 332
OSSEMQUETY vvvrveeeieeeiiiiirirreeeeeessssirrreeeeeeas 297 PKIBOUELEITOIS 1vvvvieeiiiiiriirrieeieeessiiirrieeeeeessnns 332
OSSELTICKPEISEC vvvvveeeviiiiririieieeeesieirirreeeees 298 PKIBINItBUTFErS vvvvveviiiiviiriieeie e siiiiriee e 333
OSSEANt voveeiviiirriieiiee et ssbbbrae e 298 PKIBOPEN ©.vvvvviiiiieeiiiiiriiriie e e siibrree e 334
OSSALINIT .ovvvvvrrieeeieeei i 299 PKIBIECRIVE 11vvvriiieiiiiiiiriieeie e ssiiirriee e e e e e 336
OSTaskChangePriocccvvveeereeeeiiiiinvnnennnnn 299 PKIBSENG ©.vvvvriiiiieeiiiiitiiriie e sibriee e 337
OSTASKCIBALE wvvvvvrereeeriiiiirrireereeessiiiirrrseeeeeas 300 PKIBSENGING 1vvvvviieeiiiiiriiriiee e e e 338
OSTaSKCIEALEEXT vvvvvveeviiiirrrreeieeeesieirrrneeeees 301 PKIBSELPANLY vvvvvveeiiiiiriiriiieeeeeisiiiirieneeeeennns 338
OSTaskCreateHOoKccevvvvvereeeeiiiiinnrneennnn. 302 PKICCIOSE uvvrviiiiieeiiiiitiiiiiee i e iibriee e e 332
OSTASKDEI .vvvvrriiiiieeiiiiiiiiere e 303 PKICHELEITOIS 1vvvvieeiiiiirirrrineeeeeissiibrreneeeeenens 332
OSTaSKDEIHOOK vvvvvveeeiiiiiiiiieiieeeesieirireeeeee 304 PKICINItBUTTErS vovvveiviiiviiriieeieeeisiiiiriee e 333
OSTaSKDEIRET vvvvvevieeeiiiiirirrieeeee e ieirirneeeees 305 PKICOPEN ©evvvriiiiiiee ittt e s sibrree e 334
OSTaskIAIEBHOOK ..vceceeviiiiririiiieeeeiiiiiirneenenn, 306 PKICTECRIVE 1vvvvviiieiiiiiiiriiee i e s iiibriee e e e 336
OSTaSKQUENY .vvvvvveeieeeiiiiiriireeeeeessssirsrseeeeeas 306 PKICSENG ©ovvvvriiiiiee it 337
OSTaSKRESUME 1vvvvvieeeiiiiirireeeieeessisirrrneeneeas 307 PKICSENAING 1vvvvviieeiiiiiiiiriiie e 338
OSTaskStatHOOK ..vcecceviivivireiiieieiiiiiiirneenene. 307 PKICSELPANLY vvvvvveeiiiiiriiriieeeeeeisiiirrieeeeeeennns 338
OSTaSKSEKCNK wvvvvviieeiiiiiiiiieine e, 308 PKIDCIOSE ©evvvvviiiieeiiiiitiiiiineeeee s siibriee e e e e 332
OSTaSKSUSPEND vvvvvvreeeiiiiiriireeieeeesierrreeeeees 309 PKIDGEIEITONS 1vvvvieeiiiiiriiireeeie s iiibriee e e e e 332
OSTaskSWHOOK .vvvvvvieviiiiiiireiieeeesiiiiieeee e, 310 PKIDINIBUFTEIS v.vvevviviiviriieiie e sciiriee e 333
OSTCBINItHOOK vvvvvvveiiiiiiiivieiieee e seiirneenee, 310 PKIDOPEN evvvviiiiieeiiiiitiiirine e e s iiibriee e e e 334
(O 15] N1 11=1 0] VAR 311 PKIDIECRIVE 1vvvvriiieiiiiiriiriiieeeeeisiiibriee e e e e 336
OSTIMEDIYHMSMcoovviiiiiiieie e, 312 PKIDSEN ©.vvvvviiiiieeiiiiiiiiriie e ibrree e 337
OSTIMeDIYRESUMEcoovvvrrrrrieeeeesiiirirneeeenes 313 PKIDSENAING 1vvvvriieeiiiiiiiiriiie e 338
OSTIMEDIYSEC vvvvveiieeeiiiiiriieeeee e serrrreee e 314 PKIDSEIPAITLY vvvvvveeiiiiiriirreeeieeeisiiirrieeeeeesnnns 338
OSTIMEGEL 1vvvvvriiiiiee it 315 PKIECIOSE evvvviiriieeiiiiitiiriiee i e e s iiibriee e e e 332
OSTIMESEL vvvvrriiiiieeeiiiirrrrre e s ssrbbraee s 315 PKIEGEIEITONS 1vvvvveeiiiiitiiriieeee e s s iiibriee e e e e e 332
OSTIMETICK uvvvrreeiieeeiiiiiirireeee e s serrreeee e 316 PKIEINIIBUTTENS vvvvveiiiviiiiriieiie e 333
OSTIMETICKHOOK .ovvveiviiiiiiieiieie e, 316 PKIEOPEN ©evvvvriiiiieeiiiiitiirrie e sibrree e e 334
OSVEISION ..vevvrriiiiieeeiiiiiriieeee e e e s ssarsraeee s 317 PKIETECRIVE 1vvvvvriieeiiiiitiiiriee i e s iiibriee e e e e 336
OUECHIIS wovveiiiiiiiiiiee et eib e 317 PKIESENT ©.vvvvviieiieeiiiiiriiriiee e iibriee e 337
(o101 11 RO 318 PKIESENAING 1vvvvriieeiiiiiiiriiee e 338
PKEESELPATTLY 1vvvvvreeiiiiiiiirrieeeeeessiiibrieeeeeeennns 338
P PKEFCIOSE ©uvvvvviieiieeiiiiitiiriie e s bbb e 332
paddr 319 PKIFQELEITOIS 1vvvvieiiiiiiiiirieeeieeessiiirrieeeeeeennns 332
N — I (ol ——————— 333
PAAAISS .o 321 PKIFOPEN ..o, 334
PAIIOC .vveeeeecreie e 322 PKIFTECEIVE .o, 336
PAllOC_FASt ..uvvveeeiiiiiee e et 323 PKIFSEND oo 337
PAVAIL c.vveeeeiiiiiee e 324 PKIFSENDING ..o 338
Pavail_fastceeiiiieeeeiiiiie e 325 PKIFSELPAIILY ..o 338
PCAIIOC wvvveeiiiiiee e et e et 326 PIESE oo 339
DFITSE 1ttt 327 PIASL_FASE ..o 340
pfirst_fast 328 PMOVEDEIWEEN .ovvveiiiiiriirrieeieeessiiinrrieeeeeeesnns 341
T LR 343
Dynamic C Functions rabbit.com ix

http://www.rabbit.com

011 1<] IO 344 1ea0USEIBIOCK vvvvvveiiiiiiiriiei et 393
0111« AU 345 readUSerBIOCKAITAYvvvveeieeeeiiiiiiirieeeeeeennns 394
011D £ <1 AT 346 TEQIStrY ENUMETALE ..oovvvvvveeereeesiiiirrieeeeeeennns 395
[070] | TR 347 registry_finish_readccveeveeeiiiiiiiiniennneeennns 398
POOL_APPENT .evvriieiiieei it 348 registry_finish_Writeoovvveerieiiiiiiiiiiieiieeennns 399
POOL_INIT 1oeeiiiiiiiiii e 349 TEOISIIY BT vvrvreiieeiiiiiiiirrieeiee e s s issrrreeeeeeesnns 397
POOL_HNK 1ooiviiiiiiieiiee e 350 TegiStry _Prep_readcovvvveeeeeeeiiiiiinnveneeeennnns 400
POOI_XAPPEN ©evvvvreiiieeeiiiiirireiee e e seirirreeeees 351 TEQIStrY Prep_WIItE .ovvvvvvvveeereeeiiiiiinieneeeeennns 403
07010 D L1 AU 352 TEQISIIY FBAU tvvvvvireeiiiiiiirrieiie e s sirrrree e 405
POW 11vveeieeeiiiiirrireeeeeessisarrreeesesesssnssrrseneeees 353 TEQISLIY _UPUALE vevvveeiiiiiririieieeeeeiiiirrireeeeeee s 406
POWIL0 ©evvreeeirreeeeeitreeeeerreeeeesnnre e e e enreeeeenees ggi FEQIStTY WIIE .oeevviveeeiiiieeeeeiree e e erere e e e Z'r(ﬁ
POWEISPECIIUM ©.vvierieiereiinerseinennennennennsnnannees RES e
PPV 1evvieeeiiiiirrrreeeeeessssbrreeeseeesssssbrbeeneeees 355 TS 1rttteetiiiirrrreeseee st s isbbrr e e s e e s s s brb e e e e e e e s ans 411
PPFEV_FASt .ovvviiiriieiiee e st 356 RESEIEITOILOG vvvvevvviivvrireieeeeessierirrieeeeeessens 412
PPULIASE voveeiiiiiiriieiiee e 357 (001 VAV, -1 1 KO PUURRR 412
PPULIASE_TASt +..vvvvvreeieeeiiiiiiiireee e e serrbreee e 358 TOOE2XMEM wvvvvverieeeiiiiiirrreeeeeesssisbrreeeseessnns 413
PIEMAIN 1eveevviiirrrreeeeeessiiirrrreereeesssesarrrseeeeees 358 FC_tIMEZONE trvveviieiiiiiirirrieiee e e e e 414
0] £10] (0[] SRR 359 TUNWALCH . vvvivviereeeeiiiiiireeee e e e s sirbrree e e e e 415
oA 111 AU 361
0101101 1T O 367 S
PUES oovverinieninieiiniiie 367 SOSPI_AEDOUNCE wvvveveeeeeeeiiiiiieeee e e e e e e e cireranee s 415
PWITLINIL oo, 368 SASPI_ET CSA vvvveerrrreeeeeriieeeeiireeeeeareeeeeeneis 416
PWITLSEL woveninniensnieninsnenionsnenene 369 SOSPI_GEL SCI uvvviieeeeeeeeeeintiree e e e e e e e e enrereee e 417
PXAIIOC ..o 370 SASPI_get _StAatUS rEQ .eeeeevvreeeerivreeeeeirveeeennnns 418
PXAIIOC_TaSE ..o 371 sdspi_getSectorCouNteeeevvvvreeeeeiuveeeeennes 418
PXCANIOC oo 372 SASPI_INIE_CArd ..ecovvvveeeeeiiieeeeciiee e e cciiee e 419
PXFIFSE .o 373 SASPI_INItDEVICE ..ovvveeeeeiiieeeeiireeeeeeiree e 420
PXFIFSEAST ..o 374 SASPI_ISWIItING oeevvvveeeeeiiiieeeeciree e e eeiee e 421
PXTTBE oo 375 SASPI_NOLDUSY +vveeeivrieeeeeiiieeeeeire e e e eiiee e e 421
PXTTEE_TaST ..o 376 SASPI_Print_deVccveeeeviiieee e 422
PXIBSE .o 377 sdspi_process_commandccceeeeeeuvereennnes 423
PXIBSL_FASE oo 378 SASPI_read _SECLOreeeevivreeeeriireeeeeinveeeeennes 424
PXNEXL covenieninniensnieninsiiene 379 SASPI_reset_Cardcvveeevvveeeeeiiineeeesivneeeeennns 425
PXNEXETASE ..o 380 sdspi_SeNdiNgAPcceevivieeeeiiiieeeeeciieee e 426
PXPIBV vt 381 sdspi_set_block_lengthccccveeeiiiiieeennnee. 427
PXPIEV_FASE ..o 382 SASPI_SELLED ..vvveeeieireeeeeiteeee et e e e 426
Q SASPI_WItE_SECON vvvvvveeeiiereeeesiiieeessraeeeeans 429
SASPi_WIteCONINUE .vvvveevvivieeeiirieeesiiienenns 428
oo I (] (SRR 383 SEIACIOSE weviiiiiieeeeiiiie e e s iire e e s st e e e e eraae e 448
oo T SRR 384 SErAAALADILS ..vvvveeeeiiieieeeiiree e e s e e 448
1o I =T (o[RS 385 SErAAMAOTE ...vviiii i 449
oo 2o SRR 385 SEIAAMAONvvvieee it eeiree e e earee e 450
010 APPSR 386 serAflowcontrolOffcccvveeiiiiiiieeiiiiieeens 451
SerAFlowcoNtrolONcovvvevvvieeeeeeees i, 452
R SEIAGEIC ©vvveeeiirreeeesirreeesstreeesssireeeessraeeeeans 453
(A 387 SEIAGELEITOr .eiiiiiiiieieeee ettt e e 454
and 387 SEIAOPEN evvveeeiiieittireeeeeeeeeeeirtrreeeeeeeessnanreees 455
andb o 388 SEIAPANLY ©eeeeiivrreeeeeitieeeeeirreeeeeireeeesereeeeeans Zlgg
N 3388 SEFAPEEK ovviiiiiieiie e
RdPgrtE ... 389 SEIAPULT ©vveeeeiireeeeeeireeeeeerreeeseiabeeeesebeeeeeens 458
RAPOM] oo 390 SEIAPULS ©vveeeeiireeeeeeireeeeeireeeeseisreeeesereeeeeans 459
ead e oo 392 SEFATAFIUSN .ovvviieciciee e 460
(€30_1C_32KHZ wvvovveeososeeoeoereeesoereeeesore 392 SEIATAFTER ooeiivviee e et e e cetee e e e iree e e e erree e 460
ReadCOMPIeSSEdRilevvvvorvrerosoorsessoree, 391 SEIATAUSEvvveeeeeeiieeeecerie e e e e e erree e 461
X rabbit.com Dynamic C Functions

http://www.rabbit.com

L 7 (=10 IO PP 462 L (B0 [=1 (= (o] SO 454
SETAWIFIUSH ooviiiiiiiiicc e 463 SErDOPEN ..ovvvviiriiii et 455
SEIAWIFTEE .iiviiiiiiiiiiie et saabees 463 SErDPANLY ..ovvvvrriieeieeei it 456
SEIAWIIEE 1evvveieiiiiitiieiee e e e s s irbrrre e e e e e e s sanaens 464 SErDPEEK oovvvrirriiiiie et 457
SEIAWIUSE ..oovviiiriieiie e eiiiibrree e sinrees 465 SErDPULC o.eevvivirrieiiie e st e e seibb e 458
SEIBCIOSE vevvveeii it 448 SEIDPULS 1eivvirirriiieieeesssiirrree e e e e s seabbbaeee s 459
SErBAatabitscceeeiureeeeiiiieee e e e 448 SErDIAFIUSN ©evvveeiiiiiee e 460
SerBAmMaOffvveeeiiiieee e 449 SEIDIAFTEE c.uvvveeeeeiiee e e et e e e et e e e e e 460
SErBAMAON ...uvvvieeeciiiee et 450 SEIDIAUSEA ..vvveeeeeiiieeeecitiee e e eritre e e e 461
serBflowcontrolOffccccveeiiiiiieeeniiiieeens 451 SEIDIEAU ..oevvveeeeeeivie e e ettt e 462
serBflowcontrolOncccveeeeiiiieeeeiiiieeeens 452 SErDWIFIUSH wvvveeiiiiiie e 463
SEIBUEIC vvvvvveiiiiiiiiirieie et 453 SErDWIFTEE vvvrriieeiee it e e 463
SErBUELEITON ovvivivirriiieee it e e sarees 454 SErDWIIE ovvvcvvrrieeeieeeisiiirree e e e s seabbbrree e 464
SEIBOPEN wevvveiii it 455 SErDWIUSEA .vvvvvveeiieeeiiiiirrieeee e e s ssnnrrneee e 465
SEIBPANILY vovveeviieiiiiiii et 456 SEIECIOSE .ovvvvvrriiiiie e i it 448
SEIBPEEK wevvviiii it 457 e (=0 -1 10| <SR OR 448
SEIBPULC 1vvvvveieiiiiiiiieiie et sanrees 458 L (=10 11110] 1 AT 449
SEIBPULS 1vvvvveeeiiiiiirieie e e e e ssiirbrree e e s saabeees 459 e (=10 11110 H O 450
SEIBIAFIUSN ...vvveeeciciiee e e 460 serEflowcontrolOffcccceeevviieeeiiiiiieeee, 451
SEIBIAFIE .evivvvieeeeciiieeeeeieee e e e eiree e e e sreeee e 460 SerEflowcontrolOnccceeeevviiveeeeiiieeeeenn 452
SErBrdUSEdooocvvviiiiiieie it 461 L (=10 1= RO 453
e =] 11 AT PP 462 e (=10 1= (=1 £ (0] SO 454
SErBWIFIUSH ..ovviiviiieicc et 463 e =10) o) 1 FP U TR 455
SEIBWIFTEE ooivviiiriiiiiieee et 463 SEIEPANILY .ovvvcvvrriieeiee e it s s serrbreee e 456
SEIBWITEE ©vvvviiiiiiiiiiiriiie et sanees 464 SEIEPEEK oivvvvirriiiiie et 457
SErBWIUSED ...ooocvvviiiiiieie vt 465 e (=011 | (o OT 458
L (1] (o<1 R 448 SEIEPULS evvvviirriiiiie st ssibrbreee s 459
SErCAAtabitsvvveeeeivreeeeiiiieeeeiiiee e e e sieeee e 448 SIeT0 =g | [V SRR 460
SerCAmaOffvvveeeiiiee e 449 oL = (o | =1 SRS 460
SErCAMAON ...uvvvieeeeiiiee e e et e e e et e e e e erre e 450 SEIEIAUSEA ..vvveeeieiiiee e et e e 461
serCflowcontrolOffcccvveeiiiiiieeeiiiiieeens 451 1oL =14 1o B PRR 462
serCflowcontrolOnccccveeeviiiieeeeiiiieeeens 452 SErEWIFIUSN ©.vvveeiiiiiee e 463
L (O L (o RO 453 SEIEWIFTEE ivvvvvriieiie e i it 463
L (1011 =11 (0] RNUTT R 454 SEIEWIITE oivvvvvrriieeieeei it e e ssabrbreee s 464
L (O10] o 1<) 1 H R 455 SErEWIUSE .vvvvvieeeieeiiiiiirieeee e ssinrrreee e 465
SEICPAMLY tvvveeviieirrrreereeeesisiirrbrree e e e e e s s saarenes 456 SEIFCIOSE .ovvvvvriieiiie e it 448
SEICPEEK wevvveiii it 457 e (a0 L= 011 OO 448
SEICPULC 1vvvvreeeiiiirrirereeeeesssiisrbrreeeeeeessssanrenes 458 SErFAMAOTT vvvvviiiiee i, 449
SEICPULS 1vvvvreeeiiiirrireeeeeeesssiisrbrrereeeesssssanrenes 459 SErFAMAON .vvvriiiiiee et 450
SEICIAFIUSN .uvvvieeeeciiiee e e 460 serFflowcontrolOffcccvveeviiiieee i, 451
SEICIAFTEE evivvreeeeeciiieeeeecitee e e e eiree e e e srraee e 460 SerFflowcontrolOncccveeeevviineeeeiiieee e 452
L (0110 [V 7o ISP 461 SEIFQEIC 1oivvvvirirriiiiieees it seb e 453
L (1 1=1: s AP 462 e (a0 (<11 = 1) SO 454
SEICWIFIUSN .ooviiviieiiie e 463 SEIFOPEN iivviiriiriiii et 455
SEICWIFTEE oeivviiiiiiiiiie et 463 SEIFPAITLY .ovvvevvrriieeieeeiiiiiiriee e e e s seabbrreee s 456
SEICWITEE 1evvveeeiiiiitrireieeeeeessiirbrrreeeeeeesssannrns 464 SEIFPEEK 1oivvvvtirriiii i et 457
SEICWIUSED ..oovviiviiiiiie it senrees 465 L) (010 (RO 458
SEIDCIOSE vevvveieiiiiiiiirie i 448 SEIFPULS oiiviviirriieeie st seibb e 459
SErDAAtADIS ...vvvveeeeiiieeeeviiie e e e eiee e e e 448 SEIFIAFIUSN ©.vvveeeeciiee e 460
serDAMAOTT ...vveeeeiiiiee e 449 SEIFIAFTEE vvvveeeeeiieeeee et e e e eetre e e e e e e e 460
SErDAMAONvvvieeeeiiiee e e 450 SEIFrAUSEd ..vvvveeeiiiiee e et e e 461
serDflowcontrolOffcccvveeeiiiiiieeeiiiiieeens 451 o1 2 =T 1o SRR 462
serDFowcontrolONccovvveeeeiiiieeeeiiiieeeens 452 SEIFWIFIUSN ©evvveeiiiiiee e 463
SEIDYELC 1rvviveieiiiiiiiieiie e ar e 453 SEIFWIFTEE vvvvriieeiee i iiitiee e e ssbbbaaee s 463
Dynamic C Functions rabbit.com Xi

http://www.rabbit.com

SEIFWITEE tevvveiiiiiiiiiiriiee e saareees 464 ST NI vevieee i 479
SEIFWIUSE ..ottt 465 ST_INItDEVICE .vvvrvreiieeeiiiiiirireeee e ssrrrreee e 480
servo_alloc_tableveeeveeeiiiiiiivieeneeeenniinnnnes 430 ST ASWIIEING vovvvvvreiieeee it 481
e AV O [oK1:1s | [oTo] o P 430 St PAgETORAM .ivveiiieiiiiiiiiirieee e 481
servo_disable 0 .oocvvvveeeieeeiiiiiiiiiee e 431 ST RAMTOPAGE ©vvvevreeeeiiiiiiiieiieeeeesseiarareeeneas 482
servo_disable 1 .oocvvveeeiiieiiiiiiiiiee e 432 sf_readDeVIiCERAMcccvvvveeieeeiiiiiiinneenenn. 483
SErvo_enable_ 0 ..occvvvveeeiieeiiiiiiiriiee e 433 ST_rEAAPAGE ivvvrrreeieeeii it 484
SErvo_enable_ 1 ..occvvvveeeiiieiiiiiiiriiee e 434 ST rEAdRAM .evvviiiiieeii it 485
SEIVO GBI 1vveevviiirrrreereeeessiiirrrreeeseesssssnsenes 435 st writeDeVICERAMooevvvrviiieie e veiiiveeee, 486
SEIVO_Graph .oovvveiiireieeee e e snrens 437 ST WIIEPAGE .vvvvvreiieeeiiiiiiiireiee e e senrrreee e 487
SEIVO NI wvvveiiiiiiiiiiieiie e saareees 438 STWIIERAM evvviieiiiei e 488
servo_millirpm2vemdooocvvvveeneeeinniinnnne, 438 STSPI_INIE veevviviiiiiei e 488
SEIVO_MOVE 10 ivvvrireieeeeeiiiiirirreeeeeeesssnannenns 439 SIM rrrrreeiee e i i e 489
L AV O] 0101 (010 o P 440 SINN rvviiiee e 489
SEIVO_Q0_ZEI0 0 vovvvrreeeieeeeiiiiiirieeeeeeenssinnens 441 SNPFNEF 1eveeiiiiiiiiee e 490
SEIVO_Q0_ZEM0 1 tovvvreeeieeeiiiiiiirireeeeeesssinnens 441] T T OO 491
servo_read_table .ocvvveeeeeeeiiiiiiiniien e 442 SPIREAT ...coovevvriiiiieeee s iittire e sebbbraee s 492
SEIVO_SEt_COBTES vvvvviriieeiiiiiiirieeeeeeeesiinnans 443 SPIWIIEE 1oevvivviriieiieee e viiriree e e ssibbbraee s 493
SEIVO_SEL POS .evvvverrrreirieeeeiiiirirreeeeeeessinnnenes 444 SPIWIRA .ooviiiitiieiiie et seibbbnaee s 494
SEIVO_SEE VBl ovvvviuiiriiiiee e 445 0L A1 PP 495
SEIVO_SEALS TESEL 1uvvvvverereeeiiiiiirirrreeeeeesssinnenns 445 SO vvvvrereeeeeiiirrrrreeeeeessisbr e e e e e e e s s saabbbaaeeeeas 496
SEIVO_TOTQUE ..evvvvvrrreereeeeesiiisrrrreeeeeeesssssnsenes 446 11410 NPT O 496
SErXAAtabItsvvveeeeiiiieeesiiee e e e eiiee e e e 448 1ot | PSR 497
SerXdmaOoffuvveeiiiiiie e 449 (o1 1] (SRR 498
10,40 (11710 JP TP 450 SEICIMP vevveeeeiicrtrrre e e e s s ab b 499
serXFlowcontrolOFfccoovviiiivieeeeeeeis i 451 100 1110 EPTPPP OO 500
SErXFloOWCONtrolON .uvvveveeeiiiiiiiirieee e 452 I 1(010) AT 501
SEIXUELC 1rvvireeeiiiiirrrreeeeee e s s siibbrre e e e e e e s s ssanreres 453 SEICSPN wevveeiiiirrrrree e e e e s s s eibb e e e e e e s s seabbbraee e 502
L 0,0 [=11= (0| ST 454 SEIIEN wrvviei i i 503
SEIXPANTLY vvvveeeriiiirrireieeee e ssiirbrree e e e e e s s snaareres 456 1 11| OO 504
SEIXPEEK 1evvveiiiiiiitiiriiee e e e saarares 457 1 11011 P TP PP 505
SEIXPULC 1vvvrreeesiiirrrreeeeeeesssiisrbrreeeeeessssssnrenes 458 SEIMCMPE veeeevivrrriree e et sbbbreee s 506
SEIXPULS 1rvvrreieiiiirrrreeeeeeesssiisrrrreeeseessssssnrenes 459 1 11810) AT T TP TR 507
SEIXIAFIUSN oovivciiiieiieee e 460 SEIPBIK wevveiiiiiiriiee e 508
SEIXIAFTEE 1oiiiviieeeecitee e e ecire e e e et e e e e eraae e 460 1 (11| SRR 509
L 0, (0 LU E1=Ts P 461 SEISPI 1evvieeeiiiitirrree e e e e s s ssib e e e e e e s s s abbbraee e 510
SEIXIEAU ©vvveeeiivieeeesitreeesitee e e e et e e e e erree e 462 1 111 SRR 511
SEIXWIFIUSH .evvieeciciiee e 463 14 (01 [N PRR 512
SEIXWIFTER .iivvieeeeiiieeeesciee e e e e iree e e s erreee e 463 14 (0] PR 514
SEIXWITLE 1vveeeiiiieeesiiteeeesiere e e e s sare e e e e srreee e 464 114 o) SRR 515
SEIXWIUSE .ooviveiiireiieee e esciibrree e e e s ssanrens 465 SYSRESEICNAIN .vvvvveiiieeeiiiiiiiireiee e e seiireeee e 517
] = PR 466
SEL vvvvrreveesessesenesee s e 466 T
Set_CPU_POWET_MOUE .evvvevvvviirrirreeeeeeessiinnnenes 469 tan 518
R 47
SetClockMOdUIatIoN w...cuvveiieininsiisiiininnnes 468 TATIR SEtVAIUE ovveeeeoveeeeeeeeeeeeeseeeee 520
SEYMP woveienrericimnmnisiinissnine, 471 1100 (IR 521
SetSerialTATXRVAIUESveveevivreeeeiiiiieeeenes 472 tm_wr 522
S 473 A 2o
StVOCE o000 474 (OIOWET 2o
PPEE ctveeeeeeitreeeeeitreeeeseatreeesebreeesenareeeens
SetVECtEXLErN4000ccveeeevivreeeenirveneeninnns 475
SEtVECHINEIN .vvveeiiiieee et 476]
Sf_getPagECOUNE .uvvvveeeeeeeeiiiiiirieee e e e e e s sianees 478)
ST_QEtPAGESIZE wvvvveiirrieeeiiriee e e 478 UPALETIMENS .o 524
USE32KHZOSC vooevvvveeeeiiieeeeeiieeeeesieveee s 524
Xii rabbit.com Dynamic C Functions

http://www.rabbit.com

USECIOCKDIVIAET vvvveieeeeeeeeriiiiinieeeeereenrnnnns 525

useClockDivider3000cooeeeeveeeeeeeeeenenn. 526
USEMAINOSE ..eevieeeeeeeeeeeeeeee et 527
] (o R 527
V

VAGEIFIEEWA wevvviieeieieveieee e 529
VAINIE oo 530
VAREIEASEWA wevvviiiiiieeeieee e 531
V100122 (o | 528
W

WIE_TC wvvverereeesiiiinrireeeeeessseinrrreeeeeesssnanrnnns 534
=] P 532
WIEFIAS2AITaY .vvvvveeeeeeeiiiiiiieeeeeeeeseennenes 533
WHLEUSEIBIOCK .vvvvvivveeeieieieieeeeeeeeeeeeeeeeeeeeees 535
WIteUSErBIOCKAITAY 1vvvvvreeriiiirirreeeeeeessiannnes 537
(=T 1 = 539
(=T o 540
X

D | [o T 541
XAIOC_SEALS 1oeevvvvirrreiiieeeeiiiiirrrrree e e e e e s sianrens 543
XAV 1oiviiiiiiiiii e 544
XCalculateECC256ccoeveeeeeeeeeeeeeeeeeeeeeeee 546
XChKCOrrectECC256cceeeeeeeeeeeeeeeeeeeeeeeee 547
D (0111 (01 PP 548
D (01111 AT PP 548
XGELIONG 1rvvireieiiiiiiiieiie e saara s 549
L1 11V 0o S 550
XMEM2XMEM .ieieieeeeeeeee e 551
D111 1010 | T 552
XIMEMCIMIP 1eeeiviieirrrreeeeeeessesbbbrreeseeeesssanrenes 553
XIEIEASE viviviiiiiieeeeee e 554
D1 [0): A 555
DL (11| TP 555
XSELIONG +vvvireiiiiiiiiireiie e e e saaraees 556
XSEEIEN 1oviviiiiiiiieeee e 556

Dynamic C Functions

rabbit.com

Xiii

http://www.rabbit.com

Xiv rabbit.com Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

Group Listing of Dynamic C Functions

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

A ISPUNCE . 203
_ _ ISSPACE . 202
Arithmetic LIV o] o 1= USRS 204
ADS Lo 2 T S 204
GELCIC ettt 176
IS vt 226 D
B Data Encryption
) _ _ AESAECryptaX4coovviiiiiiiieieeiei 4

Bit Manipulation AESdecryptStream4x4_CBCcccee.... 5)
BIT e 17 AESENCIYDUXA rvvvvovvoveooooeeeeeeeeeeeeseo 6
DI e 16 AESENcryptstreamaxa. CBC oo 7
RES i 411 AESEXPANAKEYA oo 8
TES wettieeeieetrrreereee s e s st e e e e e e e s 411 AESinitStreamasda ... 9
] RSSO 466
SBL wrverieierie et 466 Direct Memory Access (Rabbit 4000,

5000)

Bus Operation (Rabbit 3000, 4000) DMAGIIOC <...oooveveeverreeeerieeeseenese 47
disablelObus ..o, 46 DMACOMPIEtedcvoveverererrrereieeeereeae 48
enablelObuscccvveviiiie e, 69 DMAhandle2chan oo 49

C DMAI0E2MEM ..o 50

DMAIOIZMEM ...ooviiiiieeiieeiee e 52

Character DMAI0adBUFDESCccvveevveeieerirecieesienn 53
ISAINUM .o 197 DMAMAtChSetUpoocvvveiiiieiiieeeee 54
1SaIPha oo 198 DMAMEM2I0€oeeviiiiiiiieiiieesieeeeee 95
ISCNEIT e 198 DMAMEM2I0i ..vveiveeiieiiieeieesiee e 56
ISAIGIT oo 200 DMAMEM2MEM ...ccvvireeiirireeeeiveee e 57
ISOraP ..vvveee e 201 [D]\Y/ /AN o o] | PR 58
ISIOWET e 201 DMAPprintBufDeSsCccccvvevviveerireennne. 59
ISPIINT oo 202 DMADIINtREYS .vvvveeiiieeiiee e 60

Dynamic C Functions rabbit.com XV

http://www.rabbit.com
http://www.rabbit.com/products/dc/

DMASEtBUFDESCvvvvveeviviiee e 61 PNEL e 344
DMASELDIFECE ... 62 PNEXE vttt 345
DMASetParameterscccoevveeriiveennnnn. 63 PReXt_fastcccoeiiiiniiiee 346
DMASEArtAULOoeeviieeiiiieeieeeieee e 64 POOL_apPeNndcccveeriiiiiiieeiee e 348
DMAStartDIrectccccceevvvveeeiivereennne, 65 POOL_ NIt v 349
DY A (o] PSR 66 POOl_liNK ..vvveiiiiiic e 350
[D]\Y VAN (0] 0] B] {-To! (PSR 67 Pool_Xappendccccccvveeeiiiiiie e, 351
DMALIMErSEtUP ...vvvvieveeiieeeiiee e 67 POOL_XINIt ..eeiiiiiiiie e 352
DMAUNAIOC ...coviiiiiiiiiiiieeeee 68 PPIEV ettt ettt 355
SerAdmaOoffccccvvieiviieeie e, 449 PPrev_fastcccoeiiiiii 356
SErAAMAONoeveeiiiiiee e 450 PPULIASEevveeeiiiiee e 357
serBdmaOffcccoveeiiiiiie e, 449 pputlast_fastcccocvveeeiiiiiie e, 358
serBdmaonccccccveeiiiiee e, 450 PrEOrdErvvveeeiiiieeesiiie e e e ciiee e e siiaee e 359
serCdmaOff ..., 449 PXANOC ..o 370
SErCAdmalNccceeviieeiiieeiee e 450 pxalloc_fastccceeviieiiiiiiiiie e 371
serDAdmMaOoffcccovviiiiiiiii, 449 PXCAIlOC ..evviiiiiiiee 372
SerDAMAaONcccvviiiiieiiiieeee e 450 PXFIFSE o 373
serEdmaOff ..., 449 PXFirst_fastccoceeiiiiieiiiine e, 374
SErEAmMalNcccevvvieie e 450 PXFTEE v 375
serFdmaOoff ... 449 pxfree_fastccooeeiiiiiie i, 376
SErFAMAaONooovviiiiiieieeee e 450 PXIAST .. 377
serXdmaOffccccvvveiviiieiie e, 449 PXIaSt_fastcccoovveeiiiieie 378
SErXdmaonccceviiiiiiieeee e 450 PXNEXE eveiiiieiiie et 379
_ _ pXNeXt_fastccceviiiiiiii 380
Dynamic Memory Allocation PXPIEV eivieeeeseiieeeesivneeeesnseeeeesnsnnneeans 381
PAIOC ..o 322 DXPIEV. FASE .vvvveeeeeeeeeeeeeseeeseeesseeseens 382
palloc_fastccocceviiieiniiiniie e 323
PAVAI .o 324
pavail_fastcccoooiiiiiiiiniiiie 325 ECC
PCAllOC .o 326
e 397 CalculateECC256cvvevvveevireeireeennen 22
) ChkCorrectECC256coeevvuveeriireennnne. 23
pfirst_fastoooveeeiii 328
xCalculateECC256ccceevvvverineenne. 546
PITEE i 329
pfree_fastccovvevvverciciccee e 330 XCPKCOIECLECC2E v o471
PAWM i 331 Error Handling
PIAST oo 339 errlogFormatENtryccccocevevcverreecnnnn. 71
PIASL_FASt ..o 340 errlogFormatRegDumMPpccc.ccveveennen. 72
PMOVEDEIWEEN ..oovviiiiiciciiiias 341 errlogFormatStackDumpc.ccoeeeeeene. 72
pmovebetween_fastcc.ceviiinnn, 343 errlogGetHeaderinfoeeveveeeeereeeneen. 70
XVi rabbit.com Dynamic C Functions

http://www.rabbit.com

errlogGetMessagecvevvvveeeriveesiineenne 73 File Compression
errlogGetNthENtrycccccovvcvvveiiiiienens 71 CloselnputCompressedFile 28
errlogReadHeaderccoceveiririeienenn 73 CloseOutputCompressedFile 28
EITOI_MESSAPE ...vevvvereieriisiensieie e, 74 ComPressFileccovvverineiiniiseee 37
EXCEPLION ..vviviiiiiiic 75 DecompressFilecooevrencienenenieenes 41
RESELEITOrLOg ...cvevvviviriesiesieeeeeeens 412 OpenlnputCompressedFile 256
OpenOutputCompressedFile 257
Extended Memory ReadCompressedFilecccccevivveeens 391
XAHOC v 542
XAV e 545 File System, FAT
PAAAN ..o 319 fat_ AUtOMOUNt ..ocvveieieieececee e, 78
PRAAIDSooviiiiie e 320 fat_ClOSE ..oocvvvvvieieiiieie e, 81
PAAArSS ... 321 fat_CreateDirccooevvererenineneeeenenn, 82
FOOL2XMEM ..o 413 fat_CreateFileccoevvevvevieireiieireennn, 83
XallOC .., 941 fat_CreateTimecccceevvveeevieeiiriee e 84
XAllOC_StatScovvvveiiiiiiiiie e 543 fat_Deletecocovvveeiiiiecreeee 85
XAV .o 944 fat_ ENUMDEVICEccvvriieiiiiiieiieeeene 86
xgetfloatccoceeviiiiiiiiii, 548 fat_ EnumPartitionccccoeevriveienennn, 87
XOELNT oo 548 fat_FileSizecccovvvvvreiiiiseseceeeee, 88
XGEHIONG evvivviiiiiiieeee e 549 fat_FormatDeViCeccceevveeiveeirveeneenn, 89
XMEM2TO0L ..t 550 fat_FormatPartitionccceeververeennnn, 90
XMEM2XMEM ovvviiiiiiesieiise e 551 fat Free .o, 91
XMEMCNT L. 552 fat GELALN ..ooveeieiecie e 92
XMEMCIMP o 553 fat_GEtNaAMeccoeveieieiiecececeeeeeee, 93
XIEIEASE ...vivviiiiicreie e 554 fat_GetPartitionc.ccceveriiriinininnnn, 94
XSEtFloatcovvvriiirii 555 fat_INQt ..o 95
XSEHNT o 555 fat_INitUCOSMULEXcovvrvieiiriienieenenn 96
XSEHONG oo 556 fat_ISCIOSedccvevviiiiereieeerce 97
XSHIEN ©ooeiiiiic 556 fat_ISOPENcccvviiieiiieee e 98
fat_LaStACCESS ...ovcvveveeeiiiieeeiiieeee s 99
- fat_ LastWIiteoccveeeeviiiieeccciiiee e, 100
Fast Fourier Transforms fat_MountPartitionc.cccoecvvveennnnn 101
110019]) T 133 fal_Open ... 102
FRCPIXINY cvoeeereereerereeeeees e 134 fat_OpenDirccccvveiieiiieeiee e 104
FFreal oo 135 fat_PartitionDeViCeccevereererennnnns 105
Frealiny ..ovveeeeeeceeeeeeeeeeeeee e 136 fat_Read ..., 106
hANNCPIX oo 184 fat_ReadDir ... 107
haNNIEalcvcveeeeeceeee e, 185 fat_Seek ..o, 109
DOWEISPECLIUM .evveeeveeeeeeeereeeeeeesreennes 354 fat_SEtAHr ...ooovviieiiiecee s 111
Dynamic C Functions rabbit.com XVii

http://www.rabbit.com

fat_ Split ..ooovviieee 112 fs_Qet IX wovviiiee e 161
fat_Statusccccevevviviereeiiiiiee e 113 fs_get IX_SIZe .vovvveveiiiiiee e, 162
fat_SyncFilecccovviviii e, 114 fs_get_other IXccoooveviviiieiiiiieee, 163
fat_SyncPartitionccccvvivinnennnns 115 fs_get_ram_IX ..cccooceeeeiiiiiiiiiee 164
fat Tell e 116 S NIt oo 156
fat tiICK .vvveeeiiiiee e 117 S SEt IX wrviiiiiiee e 165
fat_Truncatecccoecvveeeeviiiiee e 118 fS_SELUP wvvveeviiiee e 166
fat_UnmountDeviceccovevivveennnen. 119 FS_SYNC v 168
fat_UnmountPartitioncccceeeenee 120 FSEEK vt 159
fat Write ..o, 121 FShift oo, 171
fat xReadcccccovvvvieeeiiiiieeee, 122,123 L10=] | TR 170
fat XWIIte oo 124 FWHE e 174
IX_formatccooveeiiiiiee e 228
File System, FS1
fCreate ..vvvveveee e 126 File System, Registry
fcreate_unusedoooceeeiiieciiee e, 128 registry_enumerateccccoceeeeriineenne 395
fdeleteovveiiei 130 registry_finish_readcccccovennennnn 398
fopen_ rdccooeeeiii 146 registry_finish_writeccccccoviiees 399
fOPEN_ WI oo 148 FEQIStry gt .oovvvveeeeiiiiie e 397
fread ...ccocveeeiee 150 registry_prep_readcccecvveeiiiiinneenns 400
fs_formatccooeiviiiii, 153 registry_prep_Writecoeeevvveerinneenne 403
FS_INIE oo 155 registry_readccoceeeriiieninienineennn 405
fs_reserve_blockscccoveiiiiiiiiinnnn. 157 registry_updateccoeeiiieiiiieniieee 406
FSCK oo 157 registry WIIteeveeviiiieeeeiiiiee e i, 407
FSEEK wevviiieiie 158
| R 169 1ash, NAND
FWIILE oo 173 NF_EraseBlOCK wvvvvvvvrreesssssssssss 245
nf_getPageCountcccocevvvierineenne 246
File System, FS2 nf_getPageSizeccccevevveveeiiecieenean, 247
fClOSE .vvveeeeeciee e 125 Nf_iNitDEVICE ...cvvvveiiiiieeiciee e, 248
fCreate .vvvveeeviiiee e 127 Nf_INIEDrVEr .o 250
fcreate_uUNUSEdocvvveeeeviiiieee e 129 nf_iSBUSYRBHWccccceovivvveiiiiieen, 251
fdeletevvveiieee 131 Nf_iSBUSYStatusccceevvvenniieniineene 252
FAUSh o, 132 nf_readPagecccveveeiiinniieniee 253
fopen_rdccoceeviiiii e, 147 nf_writePageccccoieiiiiiiiieee 254
fOPEN_ WI oo, 149 Nf XD _Detectccceevvveveeeiiiiee i, 255
fread ..ooooveeiii 151
fs_formatcccceeviiiiiiii e 154 Flash, Parallel
S QBt FIASN_IX woovooeeooooeeeeeeee 160 flash_erasechipccccccovvveeeiiiiineennn, 137
flash_erasesectorccecevvviiiveneennne 138
rabbit.com Dynamic C Functions

http://www.rabbit.com

flash_gettypecccccvvveeeviiieee e, 139 sf readRAMcccvvveiiiie e, 485
flash_initccoveeeii e 140 sf_writeDeviceRAMccccvveeiinnnnn. 486
flash_readcccoovvvvveiiiiiiec e, 141 Sf_writePageccccevevviiieee i, 487
flash_readsectorccccceeeeeiiveeeennnnn, 142 St WIHteRAM ..., 488
flash_sector2xwindowccceeeennee. 143 SFSPi_iNit ..o, 488
flash_writesectorcccceevvivneeennnn, 144
WIiteFIash2ccccevevviieerereriieecanans 532 Floating-Point Math
WItEFIASh2AITAY oo 533 BCOS .vvvereerinrreeeeasrrreesssrree e s s e e e e nraaee e 2
100 PSRRI 3
Flash, SD ACSC veevreireereeeesreesreerresteestesseesreeresreere e 3
sdspi_debouncec.ccceiieeiiiiine e, 415 BSEC uvvreeeeirreeeeeitre e e e st e e e e rr e e e arrraa e 10
sdspi_get €S ...ocovvvveeeeiiiiiee e 416 ASIN 1o 10
R0 S 0T [=1 A o] SR 417 ALAN v 11
sdspi_get_sStatus_regccceeeerivveennnnn. 418 ALAN2 e 12
sdspi_getSectorCountcceeveveennen. 418 CRIl v 24
sdspi_init_cardccccceevviiiiiiiiiineenn 419 COS ttitteieeesttree e s st et e e st e e e s e e aae e 40
SASPI_iNItDEVICEcvvvviveeiiiieiiieee 420 COSN e 40
sdspi_iSWritingcccceeevvvieeeiiiiiee e, 421 B o 43
SASPi_NOBUSY ..eeeevvvieeeeiiiieee e 421 BXP certrrreeeetrrre e e e e e e e e e a e e nraree e 76
sdspi_print_devcccceeviieee i 422 fabs oo 77
sdspi_process_command 423 FlOOr oo 145
sdspi_read_SeCtorcccecevvvrivvereennnnn 424 MO e 145
sdspi_reset_cardccooceeriiieniiieennn. 425 FIEXP v 152
sdspi_sendingAPccoovviieeeiiiiieeee, 426 1aDS oo 212
sdspi_set_block_lengthccceee.e. 427 AEXP oo 213
sAspi_SEtLEDccccvvveeeiiiiiee e 426 10Q v 213
sAspi_Write_SeCtorccceveveerieveennenn. 429 10010 eviiiiiieee e 224
sdspi_WriteContinueccccoeveennnen. 428 MOAT . 244
Flash, Serial o
sf_getPageCountccocoviniiniininnn, 478 DOWLO oovoeeeeoeoeeeeeeoeeee oo 353
sf_getPageSize ..., 478 ad 387
STMME o 479 AN ©eeeeiiiiee e 387
ST_INIDEVICE ...oovvvvvvvvvvvvsvnsrressssssen 480 FANAD i 388
STISWIIEING oo 481 FANAG .eeeeieieeiiee e 388
sf_pageTORAM ..., 481 SIN 489
ST_RAMTOPAGE ..o 482 SINN e 489
sf_readDeViceRAMcccccevcvvereennnen, 483 L D 496
ST_readPageoooovvvvvvsnnrersssssssen 484] - 1o [P 496
Dynamic C Functions rabbit.com Xix

http://www.rabbit.com

Global Positioning System

BitWIPortlccovveeiiieeeeceee e 21
RAPOIE ...vvvvevieeiiiiciiieeeee e 389
{0 20] o | RO 390
WIPOME ... 539
WIPOIL v 540

gps_ge:_p;)smon 122 12C Protocol
gps_get e Commmmmmmmmmmmmmmm————— i2¢c_check ackcccevvevieiieieiicieeee, 206
gps_ground_distanceccceeeeeeinnnenn. 183 2 init 207
H i2c_read_charcccocovviiiiiiiii i, 207
i2c_send_ackc.cccociiiiiiiiine e, 208
HDLC Protocol (Rabbit 3000, 4000, i2c send nak 208
5000) 12_8eNd_NAK vvsvrsvvssvnsesnn
I2C_Start tX .oooccveeeeviiiee e 209
HDLCAbOMEccveeeviveeeiieecveee e, 186 .
I2C_Startw_tX vvveevviiiiee i siiieeeens 210
HDLCabortFcooovveeeiiiiee e, 186 i
12C_StOP_IX tovviviiie e 211
HDLCCIOSEEoeeeviivieeeeiiiiee e 186 i)
iI2c_write_charcccccceeviiiieeeiiiieeeenn, 211
HDLCCIOSEFovvveeiiiiieeeciiiee e 186
HDLCAropEcccooevviieeeieee e, 187 Interrupts
HDLCAropFovvveeiiiiie e 187 GetVectEXtern2000ccceeeeeeeeernenennnnns 180
HDLCEIOIE ..ovoiveeeieeieeieiieeeeen, 187 GetVectEXtern3000 .ovvviviieiiiiiiii, 181
HDLCEIOrF ..o 187 GEtVECINEIN veveeeeeeeeeeeeeeeee e, 182
HDLCeXtCIOCKEccoveevvevieieiireiene 188 TOTES wovvvereerereeeeteeetere e e et seens 196
HDLCeXtCIOCKF ... 188 IPSEL ot 197
HDLCOPENE oo 189 SetVectEXtern2000cccvoveveeeeeverennn, 473
HDLCopenF 189 SetVectEXtern3000 ..o, 474
HDLCpeeKE ..o, 190 SetVectEXtern4000 ..o, 475
HDLCPpeekF ..o, 190 SEtVECHINEIN ..eececececececececececeeee e 476
HDLCreCeiVeEcccovveeviiiieeeciiiieeen, 191
HDLCreceiVeFccooovveviiiieee e, 191 L
HDLCSeNdEccoocvvveeeiiiieee e, 192 Logging Subsystem
HDLCSENAF .oooooiie 192 10g_CIBAN ..o, 214
HDLCSENINGE ...ooovvviiieiinen 193 Iog_close .. 215
HDLCsendingFccccoevvveiiiieiineene, 193 10 CONGIION +rvvvvvveeeeeeeeeeeeeeoeeeeees 216
| log_formatcccceeeviiieeeiiie e, 217
100 MAP cvvveeeiiee e 218
/0 10g_NEXL .o 219
BItRAPOIE ..o 18 10G_OPEN et 220
BitRAPOItl ..oooviiiicii 19 10G_PrEV oevevvereeeeeeeseee et 221
BitWIPOIEc.vveveeceeeecee e 20 [0G_ PUE e, 222
XX rabbit.com Dynamic C Functions

http://www.rabbit.com

109_SEEK vvvveeeiiieie e 223 (@ 1510 -1 o o P 288

OSQPOSE ..cccviirrieeee e 289

M OSQPOSLFIONt ...ccceeeeviiiiiiiieeeeeee e, 290
MD5 OSQPOSLOPL ...vvvveiiiieiiei e 291
MA5_apPPENd ...cvevveereireeieereereeeeee e, 235 OSQQUENY v 292
MA5_FINISH cvvveooeceveeeeeeeree e 236 OSSChEALOCK .vvvvvvrveerresnnennnas 293
T I T SO 235 OSSchedUnlockccoevrveeiissinennnss 293
OSSEMACCEPL ..eveevvieeiiieeiiee e 294

MicroC/OS-II OSSEMCIEALEvcvevvevereieresieree e 295
OO0SQDEcvviiiiriiisi 286 OSSEMPENovereeceeieeeeseeeeseeeen, 295
OS_ENTER_CRITICAL ...occovvviriennns 258 OSSEMPOSE oo 296
OS_EXIT_CRITICAL ..oovveiviiiiicene 258 OSSEMQUETY vevreeeeeerreeeeeeereereeeereseeees 297
OSFIagACCEPLvvvviiieiiiiieiriercee i 259 OSSEtTICKPEISEC oo 208
OSFIagCreateoovvvvriniinininiinnnns 261 OSSHAI .o eereeee e seenenesenes 298
OSFIagDel ..o, 262 OSSEAINIE e eeeeeeeeeee e, 299
OSFlagPend ..., 263 OSTaskChangePrioccccevervenne. 299
OSFIagPOSt ..o 265 OSTaSKCIEALevvveeeereeeieeesesereeen, 300
OSFIagQUETY .o 266 OSTaSKCIEAtEEXt v 301
OSINIt v 267 OSTaskCreateHOOK ovveoeoe 302
OSMDBOXACCEPL ... 267 OSTASKDEl oo 303
OSMboxCreatec.coviviiiiiiinnne, 268 OSTaskDEIHOOKccccevrvrveeererrnenann, 304
OSMBDOXDEI ..o 269 OSTaskDEIRE]vveeerererreeiserinenee, 305
OSMbOXPENd ..o 270 OSTaskIdIeHOOKc.cvvvverereceeirinne, 306
OSMDBOXPOSE ... 271 OSTaSKQUENY +e.veveeeeeeeereeeeeeeeesene, 306
OSMDBOXPOSLOPLcoovveviiieiirieiiiiieiins 272 OSTaSKRESUME oo 307
OSMDBOXQUETY ..o 273 OSTaskStatHOOK oo 307
OSMEMCTEALEoovvvvviriiiiiine, 274 OSTaSKSKCHK .., 308
OSMeMGEL ...oviiii 275 OSTaskSUSPENdcevvrrvrieiererrnnann, 309
OSMEMPUL ..o, 276 OSTasKSWHOOKoveeeereereereeeeene. 310
OSMEMQUETY ..ot 277 OSTCBINItHOOK oo 310
OSMULEXACCEPL .eevveeveeniesiiesieeieaieeneas 278 OSTIMEDIY oo, 311
OSMutexCreateccocevvvrieienririeninnns 279 OSTimMeDIYHMSM ..o, 312
OSMutexDelccooviiiiiiiiiiii, 280 OSTimeDIYRESUMEccvvveeererrerenae, 313
OSMUEEXPEN ..o, 281 OSTIMEDIYSEC ..o, 314
OSMULEXPOSL ..o, 282 OSTIMEGEL oo, 315
OSMULEXQUETY .o 283 OSTIMESEL oo 315
OSQACCEPL .o 284 OSTIMETICK oo 316
OSQCIEate ...ccvveverieeriieiiseeireee e 285 OSTIMETICKHOOK oo 316
OSQFIUSh .o, 287 OSVESION ..ovvrerveieieeeen e, 317

Dynamic C Functions rabbit.com XXi

http://www.rabbit.com

Miscellaneous mbr_UnmountPartitioncccceue.e. 233
heXStrtobYLeccvvevvveeiieeiieeiee e, 193 mbr_ValidatePartitionsccccee.s 234
ONGIMP e 224)) _

Pulse Width Modulation (Rabbit 3000,
(0] £ SRR RPURRUPRRPRRN 386 4000, 5000)
run.watch ... 415 T S 368
SBUMP oo 471 PWIM_SEL .vvveeiiiieiiiiee e siee e 369

Multitasking 0
COBEQIN e 29
COPAUSEoovvovveiesiesssses s 38 Quadrature Decoder (Rabbit 3000, 4000,
CORESEL ot 38 5000)

CORESUME oo 39 (0o =T (o SRR 383

DEIAYMS ..veveveeeeeeeeeeeeeeeeeeeeeee s 43 QO_INIt oo 384

DElaySEC ..vvvvveiiieeeciiie e 44 qd_read ..., 385

DelayTickS ..ovvevvveeeeeeee s eeeees e 45 GA_ZEr0 oo 385

IntervalMsoeevviiiieeiiieee e 195 R

INtervalSecccccevvvvvvei i 195

INtErVAITICK ©.veveveerrieierereee e 196 Rabbit 3000, 4000

ISCODONE .vveecvveeeeieee et 199 disablelObuscccocvvvvieieeieeee e 46

ISCORUNNING .eovvvieiieiiiesiee e 199 enablelObuscccccvvieiieieeee e 69

loopheadcccceevvveevieeiiiee e, 225 servo_alloc_tablecccovveeeeecniinnne, 430

o701 1T SR 225 servo_closedloopcccoceevieiiiiiinnin, 430
servo_disable_0cccoecvvveeiiiiiiiiiiinenn, 431

N servo_disable 1ccccoveeiiiiineeiinn. 432

Number-to-String Conversion servo_enable_0 ..., 433
LA Lvovveeie e 175 servo_enable_1 ..., 434
1 (0T USSP 194 SEIVO_QBAI wovvvvvniiissi 435
OB s 205 SEIVO_Qraph .ooocveevcieeeviieeiiee e 437
HOA oo 296 SEIVO NIt .ooveieeeiiee e, 438
AN oo 297 servo_millirpm2vemdccceeeennneen. 438
1] (oY RSP 527 SEIVO_MOVE_0 ..o 439

SErvo_openloopcccccccveeeeiiiieeesiiienn. 440

P servo_qd_zero 0cocccvvveeeeeensiiinne, 441

Partitions Servo_qd_zero_ 1cccccvvieiiiiiieeiiiienn, 441
mbr_CreatePartitionccceeevviiveennnns 229 Servo_read_able ...ooooovvversivrsssens 442
mbr_ENuUMDEVICEccceeeevvreeeeiiiiieenn, 230 SEIVO_SEL COBMS wvvvvrsiivvrsssvvnssssvens 443
mbr_FormatDevicecccceeveeeviiveeenns 231 SEMVO_SBLPOS -.covvvvemmmevsssssssssssss 444
mbr_MountPartitionccccceeiineenns 232 SIVO_SBLVEI wooviivvnssivnsssvnsses 445

SErvo_stats resetccevvvvvvveeeniiiinnnne, 445

Xxii rabbit.com Dynamic C Functions

http://www.rabbit.com

SEIVO_tOrQUE .evvveeeevieeeeviiieeeseieeeee e 446 PWIM_INIE v 368
_ PWM_SEL o, 369
Rabbit 3000, 4000, 5000 (o [0 =] £ (0] SRR 383
L 29 QA_INIE eveecee 384
COf_PKEESENd ..., 30 L CY: IO 385
cof _pKEFreceiveccccvvveevviineeciiiieeens 29 GZETO oo 385
cof_pktFsendcccceeviiiieeiiiiiee e 30
(o0 =T = = (SR 31 Rabbit 4000, 5000
COF_SErEQetS ..ovvveiiiiieiiieeiee e 32 DMAGIIOC ... 47
COf_SErEPULCvveviiiiiiiieiie e 33 DMAcompletedcccoevveeiiieeniiieennn. 48
(010) JSLCY =11 RO 34 DMAhandle2chancccccceeeviinneennne 49
cof SerkEreadccccevvivveeeiiiineec e, 35 DMAI0E2MEM ...cccoviiiiieeiiiieee e e 50
COf_SErEWIIte ..oovvveeeeiiiee e 36 DMAI0I2MEMoeeiiiiieee e 52
COF_SErFQetC ..covveeviiieiiieeee e 31 DMAI0adBUTDESCoovvvveeiiiieniieenne 53
COF_SErFgetsS ..ooovveeiiiieiiieeee e 32 DMAMAtChSetUpcocvvviiiieeiieeiieee 54
COf_SErFPULC ...ceeeviiiiiiiiciiee e 33 DMAMEM2I0€oeevivieiiiieiiieenieee e 55
COF_SErFPULS ..covvveeiiiiieeee e 34 DMAMEM2I0I ..covvveiiiiiiiiie e 56
cof serFreadcccccoevvveeeiiiiineeeiiiieeens 35 DMAMEM2MEM ...ccvvveeeiiiireeeciieee e 57
COf_SErFWIItE ...ocvveeeeciiee e 36 [D]1Y/ /AN o o] | PSR 58
HDLCabOrEccoocvvveeeiiiiee e 186 DMAPprintBufDEeSCcccovcvvveeeiiivineeennne, 59
HDLCabOrtFcccoovieeiiieiiieeieee 186 DMADIINtREYS ..vvveeiiieeiiee e 60
HDLCCIOSEEovvvvviiiiieiiiiiiee i 186 DMASEtBUFDESCvvvvveeiiiiieeeiiiiie e 61
HDLCCIOSEFvvvveiiiiiiieiiiiiie e 186 DMASELDIFECE ..vvvveviiviieeiiiiiee s 62
HDLCAropEccooovviieeeeiiee e, 187 DMAsetParametersccoceeeevvvereeennne 63
HDLCropFcoovveeviieee e 187 DMASLartAUL0ccccvvvveeviiieeeeiiiieeeeen 64
HDLCEITOTEoovvvieiiiieeiiieee e 187 DMASEartDIrectcccoevvveiiieeniineennnn. 65
HDLCErrorFcocovveeiiieiieeeeeeeieee 187 DMASEOP .eeeeiiieeiiie e 66
HDLCexXtCIOCKEcocvveiiiieiiinne 188 DMASEOPDIreCtcocovveiirieiiiieniieeeee 67
HDLCextCIOCKkFccccovvieiiiiiiiinne 188 DMALIMErSEtUpoovvvvveiiiieiiieesiieeee 67
HDLCOPENEooeeeviiiieeeiiiiee e 189 DMAUNAIIOCoveeeiiiiieiiiiecc e, 68
HDLCOPENFooveeiiiieee e 189 (001 A/ -1 1 KRR 412
HDLCPEEKEoeeeviiiiiieeiiiieee e 190 serAdmaOffcccccevviiiee e, 449
HDLCPEEKFcocvvveeiiieeiiieeeeeeee 190 SEFAAMAON ..o 450
HDLCreCeIVEEcccvvvvviiiiiiieiiiiieeens 191 serBdmaOffcccccvvviiiiiiiiiiee i, 449
HDLCreceiveFc.cccccvvvviveeiiieeciiee, 191 SerBdmalnccccevvviiiie i, 450
HDLCSENAEccvvveiiieiiiie e 192 SerCdmaOff ..o 449
HDLCSENdFoocvvveiiiieiiiiecieecieee 192 SErCAdmMalNcceevvieeriiie e 450
HDLCsendingEcccceevviviveeiiiineeenns 193 serDAmMaOffccccceevviiiiiee e, 449
HDLCsendingFcccooviveiiiienineenne 193 SerDAMAONeeevviiieiie e 450
Dynamic C Functions rabbit.com xxiii

http://www.rabbit.com

serEdmaOff ..., 449 cof_serCreadccccevvvveveeiiiinee e 35
SErEAMalN ...cvvevviiiee e 450 COf_SErCWIItE .oovvvvvveeiiiieee e 36
SerFAMaOff ..o 449 COf_SErDQeLC ...vvvvviiieiiieeiie e 31
SErFAMAalNcccviviiiiiiieeee e 450 COf_SErDQetSvvvvriviiiiiiiiiee e 32
serXdmaOffcccvviiiiiiiei e, 449 (070) ST B o (oSS 33
SerXdmaOnccovviereeiiiieee e 450 (070) ST B oV PRSP 34
Y1004 (010 | S 528 cof_serDreadcccceevvviveeiiiiiee e 35
COT _SErDWIIE .vvvveeeeeeiiiiciirieeeee e, 36
Real-Time Clock COT_SEIEQELC vovvveviririrerircrereeeeeeeenne 31
MKEME e 242 COF_SEIEGELS vovvrrrroeooeeees oo 32
MKIM o 243 COf_SErEPULC .ovvvviiieiiiieciiie e 33
L 392 COf_SErEPULS .ovvveiiieiiiie e 34
read_rc_32KHZcooovvvnnnnvvvvisinsnsnnnnnesn 392 cof SerkEreadccccevvvvveeeiiiineee i 35
MIC_UMEZONE ovvvvvvvssssssssssssssssssssssssssss 414 COf_SErEWIILE ..oovvvveeiciiee e 36
SEBZKHZDIVIGRT .oovovvvvvvvvvvreesssss 467 COf_SerFgeteccovvvvirieieeee 31
tM_Id e 521 = 32
EM_WE e 522 COF_SEIFPULC .vvvvvvoooooeoeoeeeeeeeeeeeeeeeseesee 33
UPdateTIMersooovvirininiininina, 524 = 34
USEIZKHZOSC wovvvvvvvevsnnnsssssssissssssnneesn 524 cof_serFreadcccccovvvveeeiiiiiee e i 35
WIIE TIC vt 534 COF_SEIFWHLE —ovvvovoeooeoeoeooeeoeoeeoeoeeoeeoooo 36
S SErACIOSE ..vvcviiiiiicic i, 448
SErAdatabitscccccvvviivieniiiiiee e, 448
Serial Communication SErAAMAOTE ... 449
COf_SEIAQEIC .ovveveviiee e 31 SerAAMAON oo 450
COf_SErAQELS oovviviieieiiiiie et 32 SerAFloweontrolON oo 452
COF_SErAPULC ...oovvvieiiieiieieeee e 33 SEIAGELC eveeeeeereeeeeeereeeeereeeresresnenes 453
COf_SETAPULS ..o 34 SETAGELEITOr ..vveececececececerecceeeeeeeeenes 454
cof_serAread ..., 35 SEFAOPEN ...vevecevreceesereeiesnessenesieseneenas 455
COf_SErAWTIte ...oovr, 36 SEFAPATILY ©ovovevvevreceereeeeiesereeseeeeesenenns 456
COf_SErBOEtCovvvvvrviiiiieiie e 31 SEIADEEK «.vvveeeeee e 457
COf_SErBgetScccovvveiriieiieiie e 32 SETADULC +.veeveveeveeeeeeeeeeeeeeeeeeesesene, 458
COf_SErBPULC ...oovvieiiiiiieieee e 33 SEIADULS +veeveveeeeeeeeeeeeeeeeeeeeeses e, 459
COf_SerBputs ... 34 SETATAFIUSH .o 460
cof_serBread ... 35 SEIATAFTEE oo 460
Cof_SerBWrite ... 36 SEFATAUSED ... 461
COf_SErCQetC ..oovvvevrieeiiee e 31 SEIAICA oo 462
COT_SErCets ..ovvvvvviiieiiieeiiie e 32 SEIAWIEIUSA oo 463
COf_SErCPULC .oovvvvevrieeciee e 33 SEIAWIEICE oo 463
COF_SErCputs ..., 34 SETAWILE .eeveeeeeeeeeeeeeese e e 464
XXiv rabbit.com Dynamic C Functions

http://www.rabbit.com

SEFAWIUSEA wovvveiieeieeeveeviiie e eerereennns 465

SErBCIOSE ..ocovviiiiieeiie e 448
serBdatabitsccccceveeeiiiiiiiiiiieeeee, 448
serBdmaOff ..o 449
serBdmaon ... 450
serBflowcontrolOnccccceevvveeeenee, 452
SEIrBUELC wovveiiiiee e 453
SErBOetError ... 454
SErBOPEN ..o 455
SErBPArity ...cccovvvveiiiiiiiiieeeee e 456
SErBpeekoccvveeeiiiie e 457
SErBPULC .ooovvieee e 458
SEIBPULS oo 459
SerBrdFIuShccccvvveeeeeeeiiiiiiieeceeeee 460
SErBrdFreeocovvvveeeeeeeei i 460
serBrdUsedccccceeeeeeiiiiiiiiiieeeeeee, 461
SerBreadccccviiiieiie e 462
SerBwrFIush ..., 463
SErBWIFIEe ...ovvvveviiiieeeciee e 463
SErBWIIte oo 464
SErBWIUSEdccvvvveeeeeeeiiiiiiirieeceeeee 465
SErCClOSE oooiiiiciiiieeee e 448
serCdatabitsccccceeeeiiiiiiiiiiieceeeee, 448
serCdmaOffcccvvveeiiiee e, 449
SErCdmalnNcccccvveeeiiiieee e 450
serCflowcontrolOncccccevvevvveeennen, 452
SEICQLLC .eveviieeeiiie e 453
SEIrCOetEITOr ..ovvveiiiiiie e 454
SerCheckParitycccccvvvvvveeiiiiiineennnne 447
(0] o1 | S 455
SEICPANtY ovvvveeeeeciiee e e 456
SEICPEEK oovveviiee e 457
SEICPULC evvivieeiiie e 458
SEICPULS e 459
SErCrdFIushcccoveeeeeeeeiiiciiee e, 460
SEICIAFTEE ..vvveeeiciiieee et 460
SErCrdUsedovvevvvveeeeviiieee e 461
SErCreadocccveeeviiiie e 462
SerCWIFIUSh ..., 463

Dynamic C Functions

SEICWIFTEE vvvieiciieee e 463
e (O] (-SRI 464
SErCWIUSEd ..vvvveeeeeeiiiiciiieeeee e, 465
SEIDCIOSE ...vvvveeeiieeeee e 448
serDdatabitsccccceeieeeeiiiiiiee e, 448
serDAmMaOffccccceevviieiiiieec e, 449
SerDAmMaoNcccveeeviieee e 450
serDflowcontrolOff 451
serDflowcontrolOnccccceeeeeeiiinnnee, 452
SEIDUELC vvveeiieie e 453
SErDGEtEITOrccvvveeeciieee e, 454
SErDOPEN ...vvvveiiiiiee e 455
SErDPArity ...veeevvcieeeeeiiee e 456
SErDpeekoovveiiiiiee 457
SEIDPULC .vvveeiiiee e 458
SEIDPULS .. 459
serDrdFlushccccooeviiii, 460
SErDIdFreeccovvveeeeiviieee e, 460
serDrdUsedcccceeevvvieeeeiiiieee e, 461
serDreadcccccoveveeeeiiiee e 462
SErDWIFIUSH ...vvvveeieiciiiie e, 463
SErDWIFIEE ..vvvveeiieeiii e, 463
SEIDWIIE ..o 464
SerDWrUSedcccceeevviieeeeiiiieee e, 465
SEIECIOSE ...vvvveeeiiiieee e 448
serEdatabitscccceeviieeeeviiieee e, 448
SerEdmaOffcoceveeeiiiie e, 449
SerEAmalncccccceeeviiiiiieee e, 450
serEflowcontrolOff 451
serEflowcontrolOncccccoevveeeiinnnn. 452
SEIEQELC oo 453
SErEQEtEITOr ..ooovvvveee e, 454
SEIEOPEN ... 455
SEIEPAritYooocvvieiiiiiiiie e 456
SEIEPEEKeveviiiiiiiee 457
SEIEPULC .o 458
SEIEPULS e 459
SErErdFIushcooccvveeeiiee e, 460
SErErdFree ..ccvvvveeeeeeeiiiciiieeeee e, 460
rabbit.com XXV

http://www.rabbit.com

SerErdUsedcccovcveeeeiiiiiee e 461 SEIXIAFIEe ..vvvveevciieee e 460
SErEreadooovevvvieeieeee e 462 SErXrdUSedveeveeeeviiiiiiiiieeeeee e, 461
SerEWIFIUSh ..o 463 SErXreadoccvvveeeeeeeiiiiee e 462
SErEWIFIee ..o, 463 SErXWIFIUSh ...vvvveiiicii e, 463
SEIEWIITE oo 464 SEIXWIFIEE .vvviiiiiiiee e 463
SErEWIUSEdooveiiiiieeciiiieee e 465 SEIXWIILE .vvveeeeeiiiee e 464
SEIFCIOSE .oovvvviiee e 448 SErXWIUSEd .oveeiiieeeeiiee e 465
serFdatabitsccoceveeeeeiiiiiieeeee 448

serFdmaOoff ... 449 Serial Packet Driver

serFAmaln ..., 450 R 29
serFflowcontrolOffcc.ecvvevnninnee, 451 COT_PKEASENM ovvvvvvvriviesssssisins, 30
serFflowcontrolOncc.ocvvcvennnee, 452 COT_PKIBIECEIVE woovvvvvrivverisiisiiinsis 29
SEIFQRLC ©oovvvvverirsireiieiesiesse s 453 COT_PKIBSEN ...oovooiiinniinne 30
SEIFQELEITOr oot 454 COT_PKICTECEIVE ...ooooovvivrneriiniienns 29
SEIFOPEN ovvviiiiiiiiiec e 455 COT_PKICSEN ooy 30
SErFpParityoooeiiiieic e, 456 COT_PKIDIECEIVovvvvvvveessssssvvvvvnns 29
SEIFPEEK .ovoviiiii 457 COT_PKIDSEN oo 30
SEIFPULC ©.voveeeeeeeeeeeeeeeeeeeeeeeeee e, 458 cof_pktEreceiveccceviiiiiiiniinnnne, 29
SEIFPULS ovovereeveeceeeseeseesseese s, 459 COT_PKIESEND ... 30
SErEIAFIUSR oo 460 COf_PKEFTeceiVe ..., 29
SEIFIAFTEE ovvvvvvieeeieeeeeeeee 460 COT_PKIFSENd .ooovvviviiniiins 30
SerFrduUsedcooveiiiiiniiiic, 461 PKIACIOSE wvvvvssssssvvvvinnesssssssns 332
SerFreadcocooovviiiiiiinic i, 462 PKIAGETEITONS ..oovovvvvvvveesssssssvsnsnes 332
SEFWIFIUSH oo, 463 PKIAINIBUTENSooovonniniii 333
SEIFWIFTEE ©.vvovveceeiieiseiesie s, 463 PKIAODPEN .o 334
SEIFWIILE ©.vvvvvvveeeessvcosssseees s 464 PKIATECEIVE ..o 336
SErFWIUSEd ..oooveveveeeeieeeeeeeee 465 PKIASEND oo, 337
serXdatabitsccooeiiiiiiniii, 448 PKIASENDING .o 338
serXdmaOff ... 449 e I 338
SErXdmaOn e 450 PKIBCIOSE ..o, 332
serXflowcontrolOffcccovvevereernnne. 451 PKIBELEITONS ovvvvvvvvosiiinnes 332
serXflowcontrolONoceererrennenns 452 PKIBINIBUFTETS ...oooooonniiiinesi, 333
1T 000 [=] (oS 453 PKIBOPEN ..o 334
O = 1, S 454 PKLBIECEIVEcooviviriiciiicic 336
SEIXPAIIY evvvvrereeeeeeeeeeeesssseeeeeeeeenee 456 PKBSEN ..o 337
SEIXPEEK ..rvvveeereeeeeeeeere e 457 PKIBsendingcccoveiiiiiiiici, 338
SEIXPULC +vrveveeeeeeeeeeeeseeeeseseeeeeeeeere 458 PKIBSELPAritY ..o 338
SEIXPULS voveeeeeeeeeeeeeeeeeseeeeeee e neeeon. 459 PKICCIOSE ...oovviiiiiciici 332
serXrdFlush ... 460 PKICGEIEIONS oo 332

XXVi rabbit.com Dynamic C Functions

http://www.rabbit.com

pktCinitBufferscccccevvieeeiiiiinnenn, 333

PKICOPEN .vviiiiieiiiee e 334
PKECIECRIVE ...vveiiieeiiiee e 336
PKECSEN ... 337
pKtCsSendingcceeeeviieieeiiiee e, 338
PKECSetParityccccevvvveeeeiiieee e, 338
PKEDCIOSE ..vvveeiiiieeeciiiee e 332
PKEIDGELEITOrS ...oevvveeiiieeviiieeie e 332
pKtDINItBUFfersccceviveviiieiiieenne 333
PKIDOPEN ..ot 334
PKEDIECRIVE ...covvvieeeciiiee e 336
PKEDSEND ..veveeiiiiieeeiiiee e 337
PKEDSENING ...ovvvveeeiiiiee e 338
PKEDSEtParityccevvivieeiiieeiiie e 338
PKEECIOSE ..oooiiiieiiiie e 332
PKELEQELEITOrS ...oovvvieiiiiiiiee e 332
PKLEINItBUFFErscoooveviiiiiiiiiiee, 333
PKEEOPEN .evvveeiiiiiee e 334
PKEEFECEIVE ..oovvviieeeiiiiee e 336
PKEESEND ...veveeiiiiee e 337
PKEESENAING ...vvveviieeiiieeeeeeee e 338
PKEESEtPAritYooovvvieiiiiiiiieeiee e 338
PKEFCIOSE ..veviieiiiiiie e 332
PKEFGELEITOrSvvveeeiiiiee et 332
PKtFINItBUferscccceeevviieeeiiiiieeen, 333
PKEFOPEN ©.ovvveeiiiiee e 334
PKEFIECEIVE ovviiiiiieiiieeec e 336
PKEFSENdooviiiiiiiiiee 337
pktFsendingccccoviiiiiiiiniieee 338
PKEFSEtParitycccceovvvieeeiiiieee e, 338

Servo Control (Rabbit 3000, 4000)

Stdio

SErVO_graphcccceeeevviieee e, 437
SEIVO NIt covvieiee i 438
servo_millirpm2vemdccocoveeeenene 438
SEIVO_MOVE_t0 vvvvveeiiiiiee e 439
SErvo_openloopccccccceeeeeiiiieeeeeinenn. 440
servo_gd_zero 0ccccccvvveeeviineeeeennenn. 441
servo_qd_zero 1cccoeceeeeeeviineeesiinnn. 441
servo_read _tableccccoeviiiiieeiiinnnnn. 442
servo_set COeffscccvvvvveiiiciieeiiinenn, 443
SEIVO_SEt POS .ovvvviviieeiiiiiiieeviiee e e s 444
Servo_Set Velcccccoviieeeiiiiieec i, 445
SErvo_Stats reSetccvveeevivvveeeriivnnnn. 445
SEIVO _tOrQUE ..ococvveeeeeiiieeeeciieeeeseeeeas 446
SPHNit ... 491
SPIREAAvvviveiiiiiiee e 492
SPIWFIE e 493
SPIWIRA .. 494
QEtChar ..ocovieiie 175
GELS 1ttt 177
KDRIt v 212
OULCHIIS ©evveiiiie e 317
OULSEE vt 318
PrINtF oo 361
PULCNAT i 367
PULS ettt 367
SNPFNtF oo, 490
SPHNtE e 495

String Manipulation

servo_alloc_tablecoovivininnnnn, 430 MEMCAT e 237
Servo_closedloopcovvvvviinininns 430 MEMCMP eeeeiierereieeeeee e 238
servo_disable_0c.ccccvvieinrciiniinennn, 431 MEMCDY vvveeveeeeeeeeeeeeeeeseeeeseeseeseeees 239
servo_disable_1ccccccevreiiincninienn, 432 MEMMOVE e 240
servo_enable_0ccoceervrieinnienniniennn, 433 Memset oo 241
servo_enable_1 ..., 434 SEICAL weveeeeeeeeeeeee e e e e e e e e e e e 497
SEIVO_QEAr ovvvvemsimsesnsmsnnsnsinsininsnsene, 435 (£ 1] (R 498
Dynamic C Functions rabbit.com XXVii

http://www.rabbit.com

] 10711 oS 499 GetVectExtern3000cccccveeeiiivneeenns 181
SEICMPE e 500 GetVectInternccccocceeviienniieniieene 182
SEICPY weeveieesiiie ettt 501 IPIES oot 196
SEICSPIN e 502 IPSEL oo 197
SLHIEN e 503 PrEMaiNvvveeiiiiiee e e e 358
) 110 | SR 504 set_cpu_power_ modecccceeeeerunnenn. 469
110101 1] o S 505 Set32KHzDIVIderccovvveeviiieeeiiieen. 467
SEINCMPI e 506 setClockModulationcccceeveeninenne 468
SENCPY et 507 SetSerial TATXRValuesccceevveeene 472
SEPDIK e 508 SYSReSEtChainccccevvveiiieeiiieeniiens o017
SUITCHI e 509 TATIR_SetValueccoccvveeeeiiveeeennn, 520
165101 PSS 510 UpdateTimerscccoeevvveeeeeiiiee e, 524
SESEE i 511 USE32KHZOSC ..vvvvivveeiiieeviiieeiie e 524
] 11 (0] QSR 514 USECIOCKDIVITET .vvvviviieeecciiiee i 525
10] (0111 RS 523 useClockDivider3000ccccceeviveeeenns 526
TOUPPET v 523 USEMAINOSC ...vveeiiieeiiiee e 527
String-to-Number Conversion u
AT e 13
_ User Block
ALOI vveeirie e 14
A0l e 15 rEAAUSBIBIOCK oo 393
SO vvvivveeieecire e 512 rea_dUserBIockArray """""""""""""" 394
SEIEOl v 515 Wr!teUserBIock """""""""""""""""" 535
writeUserBIockArraycccccccvvveennee. 537
System vV
_GetSysMacrolndeXcccevveeeiiiveneenns 178
_GetSysMacroValuecccocveverreennnnn. 179 VBAT RAM (Rabbit 4000, 5000)
_SYSISSOftResetccovviiiiiiiie, 517 (01017411 SRS 412
ChKHardReSetcevvvviviiiiiiiiiie i 25 V11 (o To] PRSP 528
ChKSOftRESELvvvvivvieiiiiiiiiiie e 25
CHKWDTO oo 26 W
clockDoublerOff ..., 27 Watchdogs
clockDoublerOnccccvvevviiiee e, 27 Disable HW WDT oo 45
defineErrorHandlercccccvevvvieiiineenne, 42 Enable HW WDT oo 69
X i 76 MW e 194
forceSOftRESEtcovvvvveviiiiiiieseee, 150 VdGetFreeWd oo 529
QEt_CPU_Trequencyo..wevvssivesvee 176 VAHIW oo 530
QELdIVIdEr19200 w.ooovvvvvvvviiiisisisssisss 177 VAINIE oo 530
GetVectEXtern2000 ..., 180 VARElEaSEWdcovevevevererirereinarenen, 531
XXViii rabbit.com Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

1. Function Descriptions

This chapter includes detailed descriptions for Dynamic C API functions. Not all API functions are
included. For example, board-specific functions are described in the board’s user manual.

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Dynamic C Functions rabbit.com 1

http://www.rabbit.com/products/dc/
http://www.rabbit.com

abs

int abs(int x);
DESCRIPTION
Computes the absolute value of an integer argument.

PARAMETERS

X Integer argument

RETURN VALUE
Absolute value of the argument.

LIBRARY
MATH.LIB

SEE ALSO
fabs

acos

float acos (float x);

DESCRIPTION
Computes the arccosine of real Float value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -1 and 1.

RETURN VALUE

Arccosine of the argument in radians.
If X is out of bounds, the function returns O and signals a domain error.

LIBRARY
MATH.LIB

SEE ALSO
cos, cosh, asin, atan

2 rabbit.com Dynamic C Functions

http://www.rabbit.com

acot

float acot(float x);

DESCRIPTION
Computes the arcotangent of real Float value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
Arccotangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO
tan, atan

acscC

float acsc(float x);

DESCRIPTION
Computes the arccosecant of real float value X.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
The arccosecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO
sin, asin

Dynamic C Functions rabbit.com

http://www.rabbit.com

AESdecrypt4x4

void AESdecrypt4x4(char far * expandedkey, char far * crypt,
char far * plain);

DESCRIPTION

Decrypts a block of data using an implementation of the Rijndael AES cipher with a 128-bit key

and block size.

The encrypted block of data may be overwritten by the decrypted block of data.

PARAMETERS

expandedkey

crypt

plain

LIBRARY
AES_CORE.LIB

A set of round keys (generated by AESexpandKey4()) from a 16-byte
(128 bit) key.

Total of 176 bytes (44 longwords)

Note: when using an AESstreamState structure (e.g. “state™) then call this
function using:

AESdecrypt4x4(state->expanded_key, plain, crypt);

A block of 16 bytes of ciphertext to be decrypted; “crypt” and “plain” may
point to the same place.

A block of 16 bytes of resulting plaintext data; “crypt” and “plain” may
point to the same place.

rabbit.com Dynamic C Functions

http://www.rabbit.com

AESdecryptStream4x4 CBC

int AESdecryptStream4x4 CBC(AESstreamState * state, long message,
long output, unsigned iInt count);

DESCRIPTION
Perform an AES-CBC decryption operation.

See Samples\Crypt\AES_STREAMTEST . C for a sample program and a detailed expla-
nation of the encryption/decryption process.

PARAMETERS

state The AESstreamState structure, initialized via
AESinitStream4x4().
This memory must be allocated in the program code before calling
AESdecrptyStreamd4x4 CBCQ):
static AESstreamState decrypt state;

message Cipher-text message (an xmem buffer)

output Output buffer, for return of decrypted text (in xmem). Must be as large as
the cipher-text buffer. May be the same as the cipher-text buffer.

count Length of the message. Must a multiple of _AES_CBC_BLK_SZ_ (16).

RETURN VALUE
0 on success, non-zero on failure

LIBRARY
AES_CORE.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

AESencrypt4x4

void AESencrypt4x4(char far * expandedkey, char far * plain,
char far * crypt);

DESCRIPTION

Encrypts a block of data using an implementation of the Rijndael AES cipher with 128-bit key
and block size. The block of data may be overwritten by the encrypted block of data.

PARAMETERS
expandedkey A set of round keys (generated by AESexpandKey4()) from a 16-byte
(128 bit) key.
Total of 176 bytes (44 longwords)

Note: when using an AESstreamState structure (e.g., “state”) then call this
function using:

AESencrypt4x4(state->expanded_key, plain, crypt);

plain A block of 16 bytes of data to be encrypted; “crypt” and “plain” may point
to the same place.
crypt A block of 16 bytes of resulting encrypted data; “crypt” and “plain” may
point to the same place.
RETURN VALUE
None.
LIBRARY

AES_CORE.LIB

6 rabbit.com Dynamic C Functions

http://www.rabbit.com

AESencryptStream4x4 CBC

int AESencryptStream4x4 CBC(AESstreamState * state, long message,
long output, unsigned iInt count);

DESCRIPTION
Perform an AES-CBC encryption operation on XMEM data. Encryption is not “in-place.”

See Samples\Crypt\AES_STREAMTEST . C for a sample program and a detailed expla-
nation of the encryption/decryption process.

PARAMETERS

state An AES stream state structure, initialized via AESinitStream4x4().
This memory must be allocated in the program code before calling
AESencrptyStream():
static AESstreamState encrypt_state;

message The message in plaintext (an xmem buffer)

output The output buffer, for return of encrypted text (in xmem), must be as large
as the plaintext buffer, and may be the same as the plaintext buffer.

count The length of the message. Must be a multiple of AES CBC _BLK SZ

(16).

RETURN VALUE
0 on success, non-zero on failure (count was not multiple of 16)

LIBRARY
AES_CORE.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

AESexpandKey4

void AESexpandKey4(char far * expanded, char far * key);

DESCRIPTION

Prepares a key for use by expanding it into a set of round keys. A key is a “password” to deci-
pher encoded data.

This function is specific to AES with 128-bit key. See AESexpandKey () for a more general
function (available with Rabbit Embedded Security Pack).

PARAMETERS

expanded A buffer for storing the expanded key. The size of the expanded key, for a
128-bit key, is 176 bytes. Other key sizes are not supported by this func-
tion.
Note: when using an AESstreamState structure (e.g., “state”) then call this
function using:
AESexpandKey4 (state->expanded_key, key);

key The cipher key, 16 bytes

RETURN VALUE
None.

LIBRARY
AES_CORE.LIB

8 rabbit.com Dynamic C Functions

http://www.rabbit.com

AESInitStream4x4

void AESinitStream4x4(AESstreamState far * state, char far * key,
char far * init_vector);

DESCRIPTION

Sets up a stream state structure to begin encrypting or decrypting a stream using AES with a
128-bit key and block size.. A particular stream state can only be used for one direction.

See Samples\Crypt\AES_STREAMTEST . C for a sample program and a detailed
explanation of the encryption/decryption process.

PARAMETERS

state

key

init _vector

RETURN VALUE
None.

LIBRARY
AES_CORE.LIB

An AESstreamState structure to be initialized. This memory must be
allocated in the program code before calling AESinitStream4x4().

The 16-byte cipher key, using a null pointer, will prevent an existing key
from being recalculated.

A 16-byte array representing the initial state of the feedback registers. Both
ends of the stream must begin with the same initialization vector and key.

For security, it is very important never to use the same initialization vector
twice with the same key.

Dynamic C Functions

rabbit.com

http://www.rabbit.com

asec

float asec(float x);

DESCRIPTION
Computes the arcsecant of real float value X.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
The arcsecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO
COoSs, acos

float asin(float x);

DESCRIPTION
Computes the arcsine of real Float value Xx.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Assumed to be between -1 and +1.

RETURN VALUE
The arcsine of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO
sin, acsc

10 rabbit.com Dynamic C Functions

http://www.rabbit.com

atan

float atan(float x);

DESCRIPTION
Computes the arctangent of real float value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
The arctangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO
tan, acot

Dynamic C Functions rabbit.com

11

http://www.rabbit.com

atan?2

float atan2(float y, float x);

DESCRIPTION

Computes the arctangent of real Float value y/x to find the angle in radians between the
x-axis and the ray through (0,0) and (x,y).

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
Yy The point corresponding to the y-axis
X The point corresponding to the x-axis

RETURN VALUE

If both y and X are zero, the function returns O and signals a domain error. Otherwise the arc-
tangent of y/x is returned as follows:

Re_turned_ VellE Parameter Values
(in Radians)
angle x#0,y=0
Pl1/2 x=0,y>0
-P1/2 x=0,y<
0 x>0,y=0
Pl x<0,y=0
LIBRARY
MATH.LIB
SEE ALSO

acos, asin, atan, cos, sin, tan

12

rabbit.com

Dynamic C Functions

http://www.rabbit.com

atof

NEAR SYNTAX: float _n_atof(char * sptr);
FAR SYNTAX: float _f atof(char far * sptr);

Note: By default, atof() is definedto _n_atof().

DESCRIPTION
ANSI string to float conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-

brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted floating value.
If the conversion is invalid, XtoXxErr is set to 1. Otherwise XtoxErr is set to 0.

LIBRARY
STRING.LIB

SEE ALSO
atoi, atol, strtod

Dynamic C Functions rabbit.com

13

http://www.rabbit.com

atoi

NEAR SYNTAX: int _n_atoi(char * sptr);
FAR SYNTAX: int _f _atoi(char far * sptr);

Note: By default, atoi () isdefinedto _n_atoi ().

DESCRIPTION

ANSI string to integer conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-

brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sptr String to convert.

RETURN VALUE
The converted integer value.

LIBRARY
STRING.LIB

SEE ALSO
atol, atof, strtod

14 rabbit.com Dynamic C Functions

http://www.rabbit.com

atol

NEAR SYNTAX: long _n_atol(char * sptr);
FAR SYNTAX: long _f atol(char far * sptr);

By default, atol () isdefinedto _n_atol ().

DESCRIPTION
ANSI string to long conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-

brary to their far versions. The user may also explicitly call the far version with _f_strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbi1t4000/FAR/.

PARAMETERS
sptr String to convert.

RETURN VALUE
The converted long integer value.

LIBRARY
STRING.LIB

SEE ALSO
atoi, atof, strtod

Dynamic C Functions rabbit.com

15

http://www.rabbit.com

bit

unsigned int bit(void * address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this call inline.

Reads specified bit at memory address. bt may be from 0 to 31. This is equivalent to the fol-
lowing expression, but more efficient:

(*(long *)address >> bhit) & 1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0O represents the least significant bit

RETURN VALUE

1: Specified bit is set.
O: Bit is clear.

LIBRARY
UTIL.LIB

SEE ALSO
BIT

16 rabbit.com Dynamic C Functions

http://www.rabbit.com

BIT

unsigned int BIT(void * address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this call inline.

Reads specified bit at memory address. b1t may be from 0 to 31. This is equivalent to the fol-
lowing expression, but more efficient:

(*(long *)address>>bit) &1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the least significant bit

RETURN VALUE
1: bitisset
O: bitisclear

LIBRARY
UTIL.LIB

SEE ALSO
bit

Dynamic C Functions rabbit.com

http://www.rabbit.com

BitRdPortE

root int BitRdPortE(unsigned int port, int bitnumber);

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified external 1/O port.

PARAMETERS
port Address of external parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
O or 1: The value of the bit read.

LIBRARY
SYSI0.LIB

SEE ALSO

RdPortl, BitRdPortl, WrPortl, BitWrPortl, RdPortE, WrPortE,
BitWrPortE

18 rabbit.com Dynamic C Functions

http://www.rabbit.com

BitRdPortl

int BitRdPortl(int port, int bitnumber);

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified internal 1/0 port.

PARAMETERS
port Address of internal parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
O or 1: The value of the bit read.

LIBRARY
SYSI0.LIB

SEE ALSO

RdPortl, WrPortl, BitWrPortl, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com

19

http://www.rabbit.com

BitWrPortE

void BitWrPortE(unsigned int port, char * portshadow, int value, int
bitcode);

DESCRIPTION
Updates shadow register at bitcode with value (0 or 1) and copies shadow to register.
WARNING! A shadow register is required for this function.

PARAMETERS
port Address of external parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the register.
value Value of 0 or 1 to be written to the bit position.

bitcode Bit position 0-7.

LIBRARY
SYSI0.LIB

SEE ALSO

RdPortl, BitRdPortl, WrPortl, BitWrPortl, BitRdPortE, RdPortE,
WrPortE

20 rabbit.com Dynamic C Functions

http://www.rabbit.com

BitWrPortl

void BitWrPortl(int port, char * portshadow, int value, iInt
bitcode);

DESCRIPTION

Updates shadow register at position b i tcode with value (0 or 1); copies shadow to register.

WARNING! A shadow register is required for this function.

PARAMETERS

port Address of internal parallel port data register.

portshadow Reference pointer to a variable to shadow the current value of the register.

value Value of 0 or 1 to be written to the bit position.

bitcode Bit position 0-7.

LIBRARY
SYSI0.LIB

SEE ALSO

RdPortl, BitRdPortl, WrPortl, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com

21

http://www.rabbit.com

CalculateECC256

long CalculateECC256(void * data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capa-
bility) value for a 256 byte (2048 bit) data buffer located in root memory.

PARAMETERS
data Pointer to the 256 byte data buffer

RETURN VALUE

The calculated ECC in the 3 LSBs of the long (i.e., BCDE) result. Note that the MSB (i.e., B)
of the long result is always zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

22 rabbit.com Dynamic C Functions

http://www.rabbit.com

ChkCorrectECC256

void ChkCorrectECC256(void * data, void * old_ecc, void * new_ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary
and possible (1 bit correction, 2 bit detection), corrects the data in the specified root memory

buffer.
PARAMETERS
data Pointer to the 256 byte data buffer
old_ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

O: Data and ECC are good (no correction is necessary)
1: Data is corrected and ECC is good

2: Data is good and ECC is corrected

3: Data and/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Functions rabbit.com

23

http://www.rabbit.com

float ceil(float x);
DESCRIPTION
Computes the smallest integer greater than or equal to the given number.

PARAMETERS

X Number to round up.

RETURN VALUE
The rounded up number.

LIBRARY
MATH.LIB

SEE ALSO
floor, fmod

24 rabbit.com Dynamic C Functions

http://www.rabbit.com

chkHardReset

int chkHardReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a hardware reset. Asserting
the RESET line or recycling power are both considered hardware resets. A watchdog timeout
is not a hardware reset.

RETURN VALUE

1: The processor was restarted due to a hardware reset.
O: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkSoftReset, chkWDTO, _syslsSoftReset

chkSoftReset

int chkSoftReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from Dy-
namic C or a call to ForceSoftReset().

RETURN VALUE

1: The board was restarted due to a soft reset.
O: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkWDTO, _syslsSoftReset

Dynamic C Functions rabbit.com

25

http://www.rabbit.com

chkWDTO

int chkWDTO(void);

DESCRIPTION
This function determines whether this restart of the board is due to a watchdog timeout.

Note: A watchdog timeout cannot be detected on a BL2000 or SmartStar.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout.
O: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, syslsSoftReset

26 rabbit.com Dynamic C Functions

http://www.rabbit.com

clockDoublerOn

void clockDoublerOn(void);

DESCRIPTION
Enables the Rabbit clock doubler. If the doubler is already enabled, there will be no effect. Also
attempts to adjust the communication rate between Dynamic C and the board to compensate for
the frequency change. User serial port rates need to be adjusted accordingly. Also note that sin-
gle-stepping through this routine will cause Dynamic C to lose communication with the target.

LIBRARY
SYS.LIB

SEE ALSO
clockDoublerOff

clockDoublerOff

void clockDoublerOFF(void);

DESCRIPTION
Disables the Rabbit clock doubler. If the doubler is already disabled, there will be no effect.
Also attempts to adjust the communication rate between Dynamic C and the board to compen-
sate for the frequency change. User serial port rates need to be adjusted accordingly. Also note
that single-stepping through this routine will cause Dynamic C to lose communication with the

target.

LIBRARY
SYS.LIB

SEE ALSO
clockDoublerOn

Dynamic C Functions rabbit.com 27

http://www.rabbit.com

CloselnputCompressedFile

void CloselnputCompressedFile(ZFILE * ifp);

DESCRIPTION

Close an input compression file opened by OpenInputCompressionFile(). Thisfile
may be a compressed file that is being decompressed, or an uncompressed file that is being com-
pressed. In either case, this function should be called for each open import ZFILE once it is done
being used to free up the associated input buffer.

PARAMETERS

ifp File descriptor of an input compression ZFILE.

RETURN VALUE
None

LIBRARY
LZSS.LIB

CloseOutputCompressedFile

void CloseOutputCompressedFile(ZFILE * ifp);

DESCRIPTION

Close an output compression file. This file is an FS2 ZF I LE which was previously opened with
OpenOutputCompressionFile(). This function should always be called when done
writing to a compression output ZF I LE to free up the associated output buffer.

PARAMETERS

ifp File descriptor of an output compression ZFILE.

RETURN VALUE
None

LIBRARY
Izss.lib

28 rabbit.com Dynamic C Functions

http://www.rabbit.com

CoBegin

void CoBegin(CoData * p);
DESCRIPTION
Initialize a costatement structure so the costatement will be executed next time it is encountered.

PARAMETERS

p Address of costatement

LIBRARY
COSTATE.LIB

cof_pktXreceive

int cof_pktXreceive(void * buffer, int buffer_size); /* X is A-F */

DESCRIPTION
Receives an incoming packet. This function returns after a complete packet has been read into
the buffer.

The functions cof_pktEreceive() and cof_pktFreceive() are available when us-
ing the Rabbit 3000 or Rabbit 4000.

PARAMETERS
buffer A buffer for the packet to be written into.

buffer_size Length of the buffer.

RETURN VALUE

>0: The number of bytes in the received packet on success.
0: No new packets have been received.

-1: The packet is too large for the given buffer.

-2: Aneeded test_packet function is not defined.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com 29

http://www.rabbit.com

cof_ pktXsend

void cof_pktXsend(void *send_buffer int buffer_length, char delay);
/* X is A-F */

DESCRIPTION
Initiates the sending of a packet of data. The function will exit when the packet is finished trans-
mitting.
The functions cof_pktEsend() and cof_pktFsend() are available when using the
Rabbit 3000 or Rabbit 4000.

PARAMETERS

send_buffer The data to be sent.

buffer_length Length of the data buffer to transmit.

delay The number of byte times (0-255) to delay before sending data. This is
used to implement protocol-specific delays between packets.
LIBRARY
PACKET.LIB

30 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof_serXgetc

int cof_serXgetc(void); /* where X is A-F */

DESCRIPTION

This single-user cofunction yields to other tasks until a character is read from port X. This func-
tion only returns when a character is successfully written. It is non-reentrant.

The functions cof_serEgetc() and cof_serFgetc() may be used with the Rabbit
3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXgetc(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE
An integer with the character read into the low byte.

LIBRARY
RS232_LIB

EXAMPLE

// echoes characters
main() {
int c;
serXopen(19200);
loopinit();
while (1) {
loophead();
wfd ¢ = cof_serAgetc();
wfd cof_serAputc(c);
3

serAclose();

Dynamic C Functions rabbit.com

31

http://www.rabbit.com

cof_serXgets

int cof_serXgets(char * s, int max, unsigned long tmout);
/* where X is A-F */

DESCRIPTION

This single-user cofunction reads characters from port X until a null terminator, linefeed, or car-
riage return character is read, max characters are read, or until tmout milliseconds transpires
between characters read. A timeout will never occur if no characters have been received. This
function is non-reentrant. It yields to other tasks for as long as the input buffer is locked or
whenever the buffer becomes empty as characters are read. s will always be null terminated
upon return. The functions cof_serEgets() and cof_serFgets() may be used with
the Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXgets(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS
s Character array into which a null terminated string is read.
max The maximum number of characters to read into s.
tmout Millisecond wait period between characters before timing out.

RETURN VALUE

1 if CR or max bytes read into s.
O if function times out before reading CR or max bytes.

LIBRARY
RS232.LIB

EXAMPLE

main() { // echoes null terminated character strings
int getOk;
char s[16];
serAopen(19200);
loopinit();
while (1) {
loophead();
costate {
wfd getOk = cof_serAgets (s, 15, 20);
if (getOk)
wfd cof_serAputs(s);
else { // timed out: s null terminated, but incomplete

}
}

serAclose();

32 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof_serXputc

void cof_serXputc (int c); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes a character to serial port X, yielding to other tasks when the
input buffer is locked. This function is non-reentrant.

The functions cof_serEputc() and cof_serFputc() may be used with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXputc(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS

c Character to write.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main() {
int c;
serAopen(19200);
loopinit();
while (1) {
loophead();
wfd ¢ = cof_serAgetc();
wfd cof_serAputc(c);
}

serAclose();

Dynamic C Functions rabbit.com

33

http://www.rabbit.com

cof_serXputs

void cof_serXputs(char * str); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes a null terminated string to port X. It yields to other tasks for
as long as the input buffer may be locked or whenever the buffer may become full as characters
are written. This function is non-reentrant.

The functions cof_serEputs() and cof_serFputs() may be used with the Rabbit
3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof _serXputs(port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS

str Null terminated character string to write.

LIBRARY
RS232_LIB

EXAMPLE

/7 writes a null terminated character string, repeatedly
main() {
const char s[] = "Hello Rabbit";
serAopen(19200);
loopinit();
while (1) {
loophead();
costate {
wfd cof_serAputs(s);
¥
3

serAclose();

34 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof_serXread

int cof_serXread(void * data, int length, unsigned long tmout);
/* X is A-F */

DESCRIPTION

This single-user cofunction reads Iength characters from port X (where X is A, B, C, D, Eor
F) or until tmout milliseconds transpires between characters read. It yields to other tasks for
as long as the input buffer is locked or whenever the buffer becomes empty as characters are

read. A timeout will never occur if no characters have been read. This function is non-reentrant.

The functions cof_serEread() and cof_serFread() may be used with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXread(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS
data Data structure into which characters are read.
length The number of characters to read into data.
tmout Millisecond wait period to allow between characters before timing out.

RETURN VALUE
Number of characters read into data.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a block of characters
main() {
int n;
char s[16];
serAopen(19200);
loopinit();
while (1) {
loophead();
costate {
wfd n = cof_serAread(s, 15, 20);
wfd cof_serAwrite(s, n);

}
}

serAclose();

Dynamic C Functions rabbit.com

http://www.rabbit.com

cof_serXwrite

void cof_serXwrite(void * data, int length); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes Iength bytes to port X. It yields to other tasks for as long
as the input buffer is locked or whenever the buffer becomes full as characters are written. This
function is non-reentrant.

The functions cof_serEwrite() and cof_serFwrite() may be used with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: cof_serXwrite(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS

data Data structure to write.

length Number of bytes in data to write.

LIBRARY

RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Rabbit";
serAopen(19200) ;
loopinit(Q);
while (1) {
loophead();
costate {
wfd cof_serAwrite(s, strlen(s));
}

}

serAclose();

36

rabbit.com Dynamic C Functions

http://www.rabbit.com

CompressFile

void CompressFile(ZFILE * input, ZFILE * output);

DESCRIPTION

This function compresses the input file (uncompressed ZF I LE, opened with
OpenlnputCompressFile()) using the LZ compression algorithm. The result is put into
a user-specified output file (an empty ZF I LE, opened with
OpenOutputCompressedFile()).

The macro OUTPUT_COMPRESSION_BUFFERS must be defined with a positive non-zero
value to use CompressFi le() or a compile-time error will occur. The default value of
OUTPUT_COMPRESSI10N_BUFFERS is zero.

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE
None

LIBRARY
LZSS.LIB

SEE ALSO
OpenlnputCompressedFile, OpenOutputCompressedFile

Dynamic C Functions rabbit.com

37

http://www.rabbit.com

CoPause

void CoPause(CoData * p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next time it is encountered unless
and until CoResume (p) or CoBegin(p) are called.

PARAMETERS

p Address of costatement

LIBRARY
COSTATE.LIB

CoReset

void CoReset(CoData * p);

DESCRIPTION
Initializes a costatement structure so the costatement will not be executed next time it is encoun-
tered.

PARAMETERS
p Address of costatement

LIBRARY

COSTATE.LIB

38 rabbit.com Dynamic C Functions

http://www.rabbit.com

CoResume

void CoResume(CoData * p);

DESCRIPTION

Resume execution of a costatement that has been paused.

PARAMETERS

p Address of costatement

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

39

http://www.rabbit.com

COs

float cos(float x);

DESCRIPTION
Computes the cosine of real float value X.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

X Angle in radians.

RETURN VALUE
Cosine of the argument.

LIBRARY
MATH.LIB

SEE ALSO
acos, cosh, sin, tan

cosh

float cosh(float x);

DESCRIPTION

Computes the hyperbolic cosine of real float value x. This functions takes a unitless number as
a parameter and returns a unitless number.

PARAMETERS
X Value to compute.

RETURN VALUE

Hyperbolic cosine.
If |x| > 89.8 (approx.), the function returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO
cos, acos, sin, sinh, tan, tanh

40 rabbit.com Dynamic C Functions

http://www.rabbit.com

DecompressFile

void DecompressFile(ZFILE * input, ZFILE * output);

DESCRIPTION

This is the expansion routine for the LZSS algorithm. It performs the opposite operation of
CompressFile(). The input file (a compressed ZF I LE, opened with
OpenlnputCompressedFile()) is decompressed to the output file (an empty FS2
ZFILE, opened with OpenOutputCompressedFile()).

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE
None

LIBRARY
LZSS.LIB

Dynamic C Functions rabbit.com

41

http://www.rabbit.com

defineErrorHandler

void defineErrorHandler(void * errfcn);

DESCRIPTION

Sets the BIOS function pointer for runtime errors to the function pointed to by errfcn. This
user-defined function must be in root memory. Specify root at the start of the function defini-
tion to ensure this. When a runtime error occurs, the following information is passed to the error

handler on the stack:

Stack Position Stack Contents
SP+0 Return address for exceptionRet
SP+2 Error code
SP+4 0x0000 (can be used for additional information)
SP+6 XPC when exception() was called (upper byte)
SP+8 Address where exception() was called
PARAMETERS
errfcn Pointer to user-defined run-time error handler.
LIBRARY
SYS.LIB
42 rabbit.com Dynamic C Functions

http://www.rabbit.com

deg

float deg(float x);
DESCRIPTION
Changes Tloat radians X to degrees

PARAMETERS

X Angle in radians.

RETURN VALUE
Angle in degrees (a float).

LIBRARY
MATH.LIB

SEE ALSO
rad

DelayMs

int DelayMs(long delayms);

DESCRIPTION

Millisecond time mechanism for the costatement wai tFfor constructs. The initial call to this
function starts the timing. The function returns zero and continues to return zero until the num-
ber of milliseconds specified has passed.

Note that milliseconds timing starts immediately, without waiting for the current millisecond to
elapse. In the case that the current millisecond is just about to end, the perceived elapsed time
may be as much as 1 millisecond shorter than the requested delay.

PARAMETERS
delayms The number of milliseconds to wait.

RETURN VALUE

1: The specified number of milliseconds have elapsed.
0: The specified number of milliseconds have not elapsed.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

43

http://www.rabbit.com

DelaySec

int DelaySec(long delaysec);

DESCRIPTION

Second time mechanism for the costatement wa i tfor constructs. The initial call to this func-
tion starts the timing. The function returns zero and continues to return zero until the number of
seconds specified has passed.

Note that seconds timing starts immediately, without waiting for the current second to elapse.
In the case that the current second is just about to end, the perceived elapsed time may be as
much as 1 second shorter than the requested delay. For more precise delays of up to 24 days
duration, consider using De layMs () instead of De laySec().

PARAMETERS

delaysec The number of seconds to wait.

RETURN VALUE

1: The specified number of seconds have elapsed.
0: The specified number of seconds have not elapsed.

LIBRARY

COSTATE.LIB

44

rabbit.com Dynamic C Functions

http://www.rabbit.com

DelayTicks

int DelayTicks(unsigned ticks);

DESCRIPTION

Tick time mechanism for the costatement wa i tFor constructs. The initial call to this function
starts the timing. The function returns zero and continues to return zero until the number of ticks
specified has passed.

1 tick = 1/1024 second.

Note that tick timing starts immediately, without waiting for the current tick to elapse. In the
case that the current tick is just about to end, the perceived elapsed time may be as much as 1
tick shorter than the requested delay.

PARAMETERS
ticks The number of ticks to wait.

RETURN VALUE

1: The specified tick delay has elapsed.
0: The specified tick delay has not elapsed.

LIBRARY
COSTATE.LIB

Disable HW _WDT

void Disable HW_WDT(void);

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog will be
enabled again just by hitting it. The watchdog is hit by the periodic interrupt, which is on by
default. This function is useful for special situations such as low power “sleepy mode.”

LIBRARY
SYS.LIB

Dynamic C Functions rabbit.com

45

http://www.rabbit.com

disablelObus

void disablelObus(void);

DESCRIPTION

This function disables external 1/0 bus and normal data bus operations resume on the Rabbit
3000 or Rabbit 4000.

The external I/O bus must be disabled during normal bus operations with other devices and must
be enabled during any external 1/O bus operation.

This function is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.

Parallel port A is set to a byte-wide input and parallel port B data direction register (PBDDR)
is set to an unknown state, which must be set by the user.

LIBRARY

ExternlO.LIB (was in R3000.LIB prior to DC 10)

SEE ALSO

enablelObus

46

rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAalloc

dma_chan_t DMAalloc(char channel_mask, int highest);

DESCRIPTION

This function returns a handle to an available channel. The handle contains the channel number
and a validation byte to prevent use of an old handle after deallocation.

PARAMETERS
channel _mask Mask of all the acceptable channels to choose from.

highest Bool indicating whether to search for an available channel from 8 or
from 0.

RETURN VALUE

Returns a handle to a DMA channel if one is available. If none are available it returns
DMA_CHANNEL_NONE.

LIBRARY
DMA_LIB

SEE ALSO
DMAunal loc, DMAhandle2chan

Dynamic C Functions rabbit.com

47

http://www.rabbit.com

DMAcompleted

int DMAcompleted(dma_chan_t handle, unsigned int * len);

DESCRIPTION

This function checks to see if a channel is finished with its DMA operation. If complete, the
number of bytes transferred in the last operation is returned in *1en (if Ien is not NULL), and
1 is returned.

PARAMETERS
handle Handle for channel to check
len Pointer to the value to be filled with the number of bytes last transferred

RETURN VALUE

1: DMA operation is complete
0: Allocated channel has never been used or is currently running
—-EINVAL: Invalid handle

LIBRARY
DMA_LIB

SEE ALSO
DMAstop

48 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAhandle2chan

int DMAhandle2chan(dma_chan_t handle);

DESCRIPTION

This function checks the validity of a handle and returns the channel number if it is valid.

PARAMETER
handle Handle to convert to channel number

RETURN VALUE

0-7: Valid channel number
DMA_CHANNEL_NONE: The channel is invalid

LIBRARY
DMA_LIB

SEE ALSO
DMAalloc, DMAunalloc

Dynamic C Functions rabbit.com

49

http://www.rabbit.com

DMA1OEe2mem

int DMAToe2mem(dma_chan_t handle, dma_addr_t dest, unsigned int src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DMA operation from external 1/0 to memory.

PARAMETERS

handle
dest
src
len

flags

Handle for channel to use in transfer

Memory destination address

External 1/0 location source address

Length to send (cannot equal zero)

Various flag options.

DMA_F_REPEAT indicates that the transfer will be a cycle
DMA_F_INTERRUPT indicates an interrupt will be triggered at the
completion of the transfer. The interrupt vector and function must be set
up in the user's code.
DMA_F_LAST_ SPECIAL (only for Ethernet or HDLC peripherals)
Internal Source: Status byte written to initial buffer descriptor before last
data.
Internal Destination: Last byte written to offset address for frame termi-
nation.
All Others: no effect.
DMA_F_SRC_DEC only for transfers with memory source. Indicates the
source address should be decremented.
DMA_F_DEST_DEC only for transfers with memory destination. Indi-
cates the destination address should be incremented.
DMA_F_STOP_MATCH indicates whether or not to stop the dma transfer
when a character is reached. The match byte and mask should have pre-
viously been set by calling the DMAmatchSetup () function.
DMA_F_TIMER indicates the DMA timer will be used. The divisor
should have already been set by calling the DMAtimerSetup () func-
tion.
DMA_F_TIMER_1BPR indicates that the timed transfers will send one
byte per request instead of the entire descriptor

50

rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAToe2mem (cont’d)

Only one of the following flags (if any) should be set. They indicate that

the DMA transfer is gated using the named pin:

 DMA_F_PD2,DMA_F_PE2, DMA_F_PE6, DMA_F_PD3,
DMA_F_PE3,DMA_F_PE7

The following flags indicate the polarity of the gating signal:

« DMA_F_FALLING (default), DMA_F_RISING, DMA_F_LOW,
DMA_F_HIGH

RETURN VALUE

0: Success
—-EINVAL: Invalid handle
—-EBUSY: Resources are busy

LIBRARY
DMA_LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Functions rabbit.com

51

http://www.rabbit.com

DMAIOI2mem

int DMAToi2mem(dma_chan_t handle, dma_addr_t dest, unsigned int src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DMA operation from internal 1/O to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src Internal 1/O location source address
len Length to send (cannot equal zero)
flags Various flag options. See DMAToe2mem() for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
—-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA_LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

52 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAloadBufDesc

void DMAloadBufDesc(int dmaChannel, dma_addr_t * bufPtr);

DESCRIPTION

This function loads the appropriate DMA Initial Address Registers for the requested DMA
channel with the address provided.

PARAMETERS
dmaChannel DMA channel number to load

bufPtr Pointer to variable containing physical address of DMA buffer

LIBRARY
DMA_LIB

SEE ALSO
DMAsetBufDesc, DMAsetDirect

Dynamic C Functions rabbit.com

53

http://www.rabbit.com

DMAmatchSetup

int DMAmatchSetup(dma_chan_t handle, int mask, int byte);

DESCRIPTION

This function sets up the mask and match registers for the DMA. These registers are only used
when the DMA_F_STOP_MATCH flag is passed to the transfer function.

PARAMETERS
handle

mask

byte

LIBRARY
DMA_LIB

SEE ALSO

Handle for the DMA channel.

Mask for termination byte (parameter 3). A value of all zeros disables the
termination byte match feature. A value of all ones uses the full termination
byte for comparison.

Byte that, if matched, will terminate the buffer.

DMAmem2mem, DMAtimerSetup

54

rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAmem2i1oe

int DMAmem2ioe(dma_chan_t handle, unsigned int dest, dma_addr_t src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DMA operation from memory to external 1/0.

PARAMETERS
handle Handle for channel to use in transfer
dest External 1/0 destination address
src Memory location source
len Length to send (cannot equal zero)
flags Various flag options. See DMAToe2mem() for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
—-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA_LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Functions rabbit.com

55

http://www.rabbit.com

DMAmem2ioi

int DMAmem2ioi(dma_chan_t handle, unsigned int dest, dma_addr_t src,

unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to internal 1/0.

PARAMETERS
handle Handle for channel to use in transfer
dest Internal 1/O destination address
src Memory location source
len Length to send (cannot equal zero)
flags Various flag options. See DMAToe2mem() for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
—-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA_LIB

SEE ALSO

DMAmem2mem, DMAcompleted, DMAstop

56

rabbit.com

Dynamic C Functions

http://www.rabbit.com

DMAmem2mem

int DMAmem2mem(dma_chan_t handle, dma_addr_t dest, dma_addr_t src,
unsigned int len, unsigned int flags);

DESCRIPTION
This function performs an immediate DMA operation from memory to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src Memory location source address
len Length to send (cannot equal zero)
flags Various flag options. See DMAToe2mem() for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
—-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA_LIB

SEE ALSO
DMAcompleted, DMAstop

Dynamic C Functions rabbit.com

57

http://www.rabbit.com

DMApol |

word DMApolI(int dmaChannel, word * bufCount);

DESCRIPTION

This is a low-level DMA function for determining how much data has been transferred by the
specified DMA channel. Since DMA is asynchronous to the CPU, this returns a lower bound
on the actually completed transfer.

IMPORTANT: Owing to the way the DMA channels are designed, this function
will not give a valid result for the first buffer in a linked list or chain, or if there is
only one buffer defined (with no link or array sequencing). To get around this lim-
itation, define the first buffer as a dummy transfer of one byte from memory to the
same memory, and link this initial dummy buffer to the desired list or array of buf-
fer descriptors. Take the dummy buffer into account when interpreting the
bufCount value returned. If you service an interrupt from the dummy buffer
completion, you will know when it is valid to poll.

This function is mainly intended for endless DMA loops (e.g., receiving into a cir-
cular buffer from a serial port) thus the above restriction should not be too onerous
in practice.

PARAMETERS
dmaChannel DMA channel number to poll (0-7).

bufCount Pointer to variable in which the completed buffer count will be written. The
return value contains the number of bytes remaining (not yet transferred)
in this buffer. The buffer count wraps around modulo 256.

RETURN VALUE

The number of bytes remaining in the buffer indicated by *bufCount. This ranges from 0, if
completed, up to the total size of the buffer, if not yet started. If the size of any single transfer
was 65536 bytes, then the return value is ambiguous as to whether it means “0” or “65536.”

LIBRARY
DMA_LIB

SEE ALSO
DMAloadBufDesc, DMAsetDirect

58 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAprintBufDesc

void DMAprintBufDesc(void * dr, long dp);

DESCRIPTION

This is a debugging function only. It formats and prints the contents of the buffer descriptor at
*dr or *dp, using bit 6 of the chanControl field to determine whether to assume a short
or long format. If dr is not NULL, then the buffer descriptor is in root memory and *dr is used.
Otherwise, dp is assumed to be the physical address of the buffer descriptor in xmem.

PARAMETERS
dr Pointer to buffer descriptor in root memory.

dp Address of buffer descriptor in physical memory.

LIBRARY
DMA_LIB

SEE ALSO
DMAprintRegs

Dynamic C Functions rabbit.com

59

http://www.rabbit.com

DMAprintRegs

void DMAprintRegs(int chan, int masters);

DESCRIPTION

This is a debugging function only. This prints the values of the hardware registers for the spec-
ified channel. If masters is true, then it also prints the values of the master DMA control regis-
ters.

Note that the Source and Destination Address registers are write only and read as zero.

PARAMETERS
chan Channel number to print
masters A bool to determine whether or not to print out the master registers shared
between all channels
LIBRARY
DMA.LIB
SEE ALSO
DMAprintBufDesc

60 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAsetBufDesc

int DMAsetBufDesc(char chanControl, unsigned int bufLength,
dma_addr_t srcAddress, dma_addr_t destAddress, dma_addr_t
linkAddress, dma_addr_t bufPtr, int bufSize);

DESCRIPTION

This function loads a DMA buffer descriptor in memory with the values provided. The buffer
needs to be described as either 12 or 16 bytes in size.

PARAMETERS
chanControl DMA channel control value
bufLength DMA buffer length
srcAddress DMA source address
destAddress DMA destination address
linkAddress DMA link address (of next buffer descriptor)
bufPtr Physical address of buffer descriptor to fill
bufSize Size of buffer descriptor in bytes (12 or 16 only)

RETURN VALUE

0: Success
—-EINVAL: Error

LIBRARY
DMA_LIB

SEE ALSO
DMAloadBufDesc, DMAsetDirect

Dynamic C Functions rabbit.com

61

http://www.rabbit.com

DMAsetDirect

void DMAsetDirect(int channel, char chanControl, unsigned int
bufLength, dma_addr_t srcAddress, dma_addr_t destAddress,
dma_addr_t linkAddress);

DESCRIPTION

This function sets up a DMA channel with the values provided.

PARAMETERS
channel
chanControl
bufLength
srcAddress
destAddress
linkAddress

LIBRARY
DMA_LIB

SEE ALSO

DMA channel to set

DMA channel control value
DMA buffer length

DMA source address

DMA destination address

DMA link address (of next buffer descriptor)

DMAloadBufDesc, DMAsetBufDesc

62

rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAsetParameters

int DMAsetParameters(unsigned int transfer_pri, unsigned int
interrupt_pri, unsigned int inter_dma pri, unsigned int
chunkiness, unsigned int min_cpu_pct);

DESCRIPTION

This function sets up DMA parameters. The chunkiness parameter determines the amount
of CPU time needed to transfer data according to this chart:

chunkiness 1 2 3 4 8 16 32 64

CPU_cycles 11 15 19 23 39 71 135 263

The min_cpu_pct parameter determines the minimum time between bursts and is calculated
with this formula:

o= (CPU cycles - min cpu pct)

cpu free tim -
(100 — min_cpu_pct)

This is then rounded up to the nearest value out of 12, 16, 24, 32, 64, 128, 256, or 512.
PARAMETERS

transfer_pri DMA transfer priority (0, 1, 2 or 3), transfers can occur when the CPU
interrupt priority is less than or equal to this value.

interrupt_pri DMA interrupt priority (0, 1, 2, or 3); a value of 0 will disable the
DMA interrupts.

inter_dma_pri Relative prioritization amongst the DMA channels. It is one of the fol-
lowing constants:

» DMA_IDP_FIXED - fixed priorities, with higher channel numbers tak-
ing precedence;

* DMA_IDP_ROTATE_FINE - priorities are rotated after every byte
transferred;

« DMA_IDP_ROTATE_COARSE - priorities rotated after every transfer
request, the size of which is determined by the “chunkiness” parameter.

chunkiness Maximum transfer burst size. Allowed values are 1, 2, 3, 4, 8, 16, 32,
or 64. Other numbers will be rounded down to the nearest allowed val-
ue.

Dynamic C Functions rabbit.com

http://www.rabbit.com

DMAsetParameters (cont’d)

min_cpu_pct A number between 0 and 100 describing the minimum (worst-case)
relative amount of time that the CPU will control the bus versus the
DMA time. Internally, this function uses this figure to determine the
'minimum clocks between bursts' hardware setting. The figure will be
rounded in favor of the CPU, up to the maximum possible hardware

setting.
RETURN VALUE

0: Success
—-EINVAL: for an error

LIBRARY
DMA_LIB

DMAstartAuto

void DMAstartAuto(int channel);

DESCRIPTION
This function is defined to the following:

WrPortl (DMALR, NULL, 1 << channel);

Start (using auto-load) the corresponding DMA channel, using the buffer descriptor in memory

addressed by the Initial Address Register. This command should only be used after the Initial
Address has been loaded.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan())

LIBRARY
DMA_LIB

SEE ALSO
DMAstartDirect, DMAstopDirect

64 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAstartDirect

void DMAstartDirect(int channel);

DESCRIPTION
This function is defined to the following:

WrPortl (DMCSR, NULL, 1 << channel);

Start (or restart) the corresponding DMA channel using the contents of the DMA channel reg-

isters. This command should only be used after all the DMA channel registers have been loaded.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan())

LIBRARY
DMA_LIB

SEE ALSO
DMAstartAuto, DMAstopDirect

Dynamic C Functions rabbit.com

65

http://www.rabbit.com

DMAStop

int DMAstop(dma_chan_t handle);

DESCRIPTION

Stop a DMA operation started with one of the DMAmemz2ioe series functions.
DMAcompleted () will return TRUE after for an operation stopped with this function, but
with less data length than the original request. It is OK to stop an operation that has currently
completed; this has no effect. DMAcompleted () may be called to determine the actual
amount of data transferred.

PARAMETER
Handle for channel to stop.

RETURN VALUE

0: Success
—-EINVAL: Invalid handle

LIBRARY
DMA_LIB

SEE ALSO
DMAcompleted, DMAstopDirect

66 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAstopDirect

void DMAstopDirect(int channel);

DESCRIPTION
This function is defined to the following:

WrPortl (DMHR, NULL, 1 << channel);

Halt the corresponding DMA channel. The DMA registers obtain the current state and the DMA
can be restarted using the DMCSR.

PARAMETER
channel DMA channel (obtainable through DMAhandle2chan())

LIBRARY
DMA_LIB

SEE ALSO
DMAstartAuto, DMAstartDirect

DMAtimerSetup

void DMAtimerSetup(unsigned int divisor);

DESCRIPTION

This function sets up the DMA 16-bit divisor. To use the divisor, the DMA_F_TIMER flag must
be passed to the transfer function.

PARAMETER

divisor 16-bit divisor for the DMA timer

LIBRARY
DMA_LIB

SEE ALSO
DMAmem2mem, DMAmatchSetup

Dynamic C Functions rabbit.com

67

http://www.rabbit.com

DMAunalloc

int DMAunalloc(dma_chan_t handle);

DESCRIPTION

This function deallocates a handle, effectively closing the DMA channel to which it was asso-

ciated.

PARAMETER

handle Handle for DMA channel; returned by DMAal loc ().

RETURN VALUE

0: Success
—-EINVAL: Error

LIBRARY
DMA_LIB

SEE ALSO
DMAal loc, DMAhandle2chan

68

rabbit.com

Dynamic C Functions

http://www.rabbit.com

Enable HW _WDT

void Enable_HW _WDT(void);

DESCRIPTION
Enables the hardware watchdog timer on the Rabbit processor. The watchdog is hit by the peri-
odic interrupt, which is on by default.

LIBRARY
SYS.LIB

enablelObus

void enablelObus(void);

DESCRIPTION

This function enables external 1/0 bus operation on the Rabbit 3000 or Rabbit 4000. The exter-

nal 1/0 bus must be enabled during any external 1/O bus operation and disabled during normal
bus operations with other devices.

Parallel port A becomes the 1/O data bus and parallel port B bits 7:2 becomes the 1/O address
bus.

This function is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.
If the macro PORTA_AUX 10 has been previously defined, this function should not be called.

LIBRARY
ExternlO.LIB (was in R3000.LIB prior to DC 10)

SEE ALSO
disablelObus

Dynamic C Functions rabbit.com

http://www.rabbit.com

errlogGetHeaderInfo

root char* errlogGetHeaderInfo(void);

DESCRIPTION
Reads the error log header and formats the output.

When running stand alone (not talking to Dynamic C), this function reads the header directly
from the log buffer. When in debug mode, this function reads the header from the copy in flash.

When a Dynamic C cold boot takes place, the header in RAM is zeroed out to initialize it, but
first its contents are copied to an address in the BIOS code before the BIOS in RAM is copied
to flash. This means that on the second cold boot, the data structure in flash will be zeroed out.
The configuration of the log buffer may still be read, and the log buffer entries are not affected.

Because the exception mechanism resets the processor by causing a watchdog time-out, the
number of watchdog time-outs reported by this functions is the number of actual WDTOs plus
the number of exceptions.

RETURN VALUE

A null terminated string containing the header information:

Status Byte: O
#Exceptions: 5

Index last exception: 5
#SW Resets: 2
#HW Resets: 2
#WD Timeouts: 5

The string will contain “Header checksum invalid” if a checksum error occurs. The meaning of
the status byte is as follows:

bit
bit
bit
bit
bit
bit

a~rwWNEFO

-7

An error has occurred since deployment

The
The
The
The
Not

count of SW resets has rolled over.
count of HW resets has rolled over.

count of WDTOs has rolled over.
count of exceptions has rolled over.
used

The index of the last exception is the index from the start of the error log entries. If this index
does not equal the total exception count minus one, the error log entries have wrapped around

the log buffer.

LIBRARY

ERRORS.LIB

70

rabbit.com

Dynamic C Functions

http://www.rabbit.com

errlogGetNthEntry

root int errlogGetNthEntry(int N);

DESCRIPTION

Loads errLogEntry structure with Nth entry of the error buffer. This must be called before
the functions below that format the output.

PARAMETERS
N Index of entry to load into errLogEntry

RETURN VALUE

0: Success, entry checksum okay.
-1: Failure, entry checksum not okay.

LIBRARY
ERRORS.LIB

errlogFormatEntry

root char* errlogFormatEntry(void);

DESCRIPTION
Returns a null terminated string containing the basic information contained in errLogEntry:
Error type=240
Address = 00:16aa
Time: 06/11/2001 20:49:29
RETURN VALUE
The null terminated string described above.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

errlogFormatRegDump

root char* errlogFormatRegDump(void);

DESCRIPTION
Returns a null terminated string containing a register dump using the data in errLogEntry:
AF=0000,AF"=0000
HL=00f0,HL"=15e3
BC=16ce,BC"=1600
DE=0000,DE"=1731

IX=d3f1,1Y =0560
SP=d3eb, XPC=0000

RETURN VALUE
The null terminated string described above.

LIBRARY
ERRORS.LIB

errlogFormatStackDump

root char * errlogFormatStackDump(void);

DESCRIPTION
Returns a null terminated string containing a stack dump using the data in errLogEntry.
Stack Dump:
0024,04f1,
d378,c146,
c400,a108,
2404,0000,
RETURN VALUE

The null terminated string describe above.

LIBRARY
ERRORS.LIB

72 rabbit.com Dynamic C Functions

http://www.rabbit.com

errlogGetMessage

root char * errlogGetMessage(void);

DESCRIPTION

Returns a null terminated string containing the 8 byte message in errLogEntry.

RETURN VALUE
A null terminated string.

LIBRARY
ERRORS.LIB

errlogReadHeader

root int errlogReadHeader(void);

DESCRIPTION
Reads error log header into the structure errloglinfo.

RETURN VALUE

0: Success, entry checksum OK.
-1: Failure, entry checksum not OK.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

73

http://www.rabbit.com

error_message

unsigned long error_message(Int message_index);

DESCRIPTION

Returns a physical pointer to a descriptive string for an error code listed in errno. Lib. The
sample program Samples\ErrorHandl ing\error_message_ test.cillustratesthe
use of error_message(). The error message strings are defined in errors.lib.

PARAMETER

message_index Positive or negative value of error return code.

RETURN VALUE
Physical address of string, or zero if error code is not listed.

LIBRARY
ERRORS.LIB

74 rabbit.com Dynamic C Functions

http://www.rabbit.com

exception

int exception(int errCode);

DESCRIPTION

This function is called by Rabbit libraries when a runtime error occurs. It puts information
relevant to the runtime error on the stack and calls the default runtime error handler pointed to
by the ERROR_EXIT macro. To define your own error handler, see the
defineErrorHandler () function.

When the error handler is called, the following information will be on the stack:

Location on Stack Description
SP+0 Return address for error handler call
SP+2 Runtime error code
SP+4 (can be used for additional information)
SP+6 XPC when exception() was called (upper byte)
SP+8 Address where exception() was called from

RETURN VALUE
Runtime error code passed to it.

LIBRARY
ERRORS.LIB

SEE ALSO
defineErrorHandler

Dynamic C Functions rabbit.com

75

http://www.rabbit.com

void exit(int exitcode);

DESCRIPTION

Stops the program and returns exitcode to Dynamic C. Dynamic C uses values above 128
for run-time errors. When not debugging, ex it will run an infinite loop, causing a watchdog
timeout if the watchdog is enabled.

PARAMETERS

exitcode Error code passed by Dynamic C.

LIBRARY
SYS.LIB

exp

float exp(float x);

DESCRIPTION

Computes the exponential of real Float value x.
PARAMETERS

X Value to compute
RETURN VALUE

Returns the value of e*.

If x >89.8 (approx.), the function returns INF and signals a range error. If x <-89.8 (approx.),
the function returns 0 and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO
log, 1ogl0, frexp, ldexp, pow, powlO, sqgrt

76 rabbit.com Dynamic C Functions

http://www.rabbit.com

fabs

float fabs(float x);

DESCRIPTION
Computes the float absolute value of Float Xx.

PARAMETERS

X Value to compute.

RETURN VALUE

X, ifx>=0

else -x.
LIBRARY

MATH.LIB
SEE ALSO

abs

Dynamic C Functions rabbit.com

77

http://www.rabbit.com

fat AutoMount

int fat_AutoMount(word flags);

DESCRIPTION

Initializes the drivers in the default drivers configuration list in fat_config. lib and enu-
merates the devices in the default devices configuration list, then mounts partitions on enumer-
ated devices according to the device's default configuration flags, unless overridden by the
specified run time configuration flags. Despite its lengthy description, this function makes ini-
tializing multiple devices using the FAT library as easy as possible. The first driver in the con-
figuration list becomes the primary driver in the system, if one is not already set up.

After this routine successfully returns, the application can start calling directory and file func-
tions for the devices' mounted partitions.

If devices and/or partitions are not already formatted, this function can optionally format them
according to the device's configuration or run time override flags.

This function may be called multiple times, but will not attempt to remount device partitions
that it has already mounted. Once a device partition has been mounted by this function, un-
mounts and remounts must be handled by the application.

Even though this function may be called multiple times, it is not meant to be used as a polling
or status function. For example, if you are using removable media such as an SD card, you
should call sdspi_debounce()to determine when the card is fully inserted into the socket.

There are two arrays of data structures that are populated by calling fat_AutoMount(). The
array named fat_part_mounted[] is an array of pointers to fat_part structures. A
fat_part structure holds information about a specific FAT partition. The other array,
_TFat_device_table[], is composed of pointers to mbr_dev structures. An mbr_dev
structure holds information about a specific device. Partition and device structures are needed
in many FAT function calls to specify the device and partition to be used.

An example of using fat_part_mounted][] was shown in the sample program
Tat_create.c. FAT applications will need to scan fat_part_mounted][] to locate val-
id FAT partitions. A valid FAT partition must be identified before any file and directory opera-
tions can be performed. These pointers to FAT partitions may be used directly by indexing into
the array or stored in a local pointer. The fat_shel Il _c sample uses an index into the array,
whereas most other sample programs make a copy of the pointer.

An example of using _fat_device_ table[] is in the sample program fat_shell .c.
This array is used in FAT operations of a lower level than fat_part_mounted[]. Specifi-
cally, when the device is being partitioned, formatted and/or enumerated. Calling
fat_AutoMount() relieves most applications of the need to directly use
fat_device_table[].

78 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_AutoMount (cont’d)

PARAMETERS

flags Run-time device configuration flags to allow overriding the default device
configuration flags. If not overriding the default configuration flags, spec-
ify FDDF_USE_DEFAULT. To override the default flags, specify the
ORed combination of one or more of the following:
* FDDF_MOUNT_PART_0: Mount specified partition
* FDDF_MOUNT_PART_1:
* FDDF_MOUNT_PART_2:
* FDDF_MOUNT_PART_3:
* FDDF_MOUNT_PART_ALL: Mount all partitions
» FDDF_MOUNT_DEV_0: Apply to specified device
* FDDF_MOUNT_DEV_1:
* FDDF_MOUNT_DEV_2:
* FDDF_MOUNT_DEV_3:
» FDDF_MOUNT_DEV_ALL: Apply to all available devices
» FDDF_NO_RECOVERY: Use norecovery if fails first time
» FDDF_COND_DEV_FORMAT: Format device if unformatted
» FDDF_COND_PART_FORMAT: Format partition if unformatted
» FDDF_UNCOND_DEV_FORMAT: Format device unconditionally
* FDDF_UNCOND_PART_FORMAT: Format partition unconditionally

Note: The FDDF_MOUNT_PART_* flags apply equally to all
FDDF_MOUNT_DEV_* devices which are specified. If this is a prob-
lem, call this function multiple times with a single DEV flag bit each
time.

Note: Formatting the device creates a single FAT partition covering
the entire device. It is recommended that you always set the

* PART_FORMAT flag bit if you set the corresponding

* DEV_FORMAT flag bit.

Dynamic C Functions rabbit.com 79

http://www.rabbit.com

fat_AutoMount (cont’d)

RETURN VALUE

0O: success

—-EBADPART: partition is not a valid FAT partition

—-E10: Device /O error

-EINVAL: invalid prtTable

-EUNFORMAT: device is not formatted

—ENOPART: no partitions exist on the device

-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete
the close.

Any other negative value means that an 1/O error occurred when updating the directory entry.
In this case, the file is forced to close, but its recorded length might not be valid.

LIBRARY

FAT_LIB

SEE ALSO

fat EnumDevice, fat EnumPartition, fat MountPartition

80

rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_Close

int fat_Close(FATfile *file);

DESCRIPTION

Closes a currently open file. You should check the return code since an 1/0 needs to be per-
formed when closing a file to update the file's EOF offset (length), last access date, attributes
and last write date (if modified) in the directory entry. This is particularly critical when using
non-blocking mode.

PARAMETERS

file Pointer to the open file to close.

RETURN VALUE

0O: success.

—-EINVAL: invalid file handle.

—-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete
the close.

Any other negative value means that an 1/O error occurred when updating the directory entry.
In this case, the file is forced to close, but its recorded length might not be valid.

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat OpenDir

Dynamic C Functions rabbit.com

81

http://www.rabbit.com

fat_CreateDir

int fat _CreateDir(fat_part *part, char *dirname);

DESCRIPTION
Creates a directory if it does not already exist. The parent directory must already exist.
In non-blocking mode, only one file or directory can be created at any one time, since a single

static FATT1 e is used for temporary storage. Each time you call this function, pass the same
dirname pointer (not just the same string contents).

PARAMETERS
part Handle for the partition being used.
dirname Pointer to the full path name of the directory to be created.

RETURN VALUE
0O: success.
—-EINVAL: invalid argument. Trying to create volume label.
—ENOENT: parent directory does not exist.
—-EPERM: the directory already exists or is write-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: if non-blocking, but a previous sequence of calls to this function (or
fat_CreateFile()) has not completed and you are trying to create a different file or direc-
tory. You must complete the sequence of calls for each file or directory i.e., keep calling until
something other than —~EBUSY is returned.

Other negative values are possible from fat_Open()/fat_Close() calls.

LIBRARY
FAT_LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat CreateFile

82 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_CreateFile

int fat CreateFile(fat_part * part, char * filename, long
alloc_size, FATfile * Tile);

DESCRIPTION
Creates a file if it does not already exist. The parent directory must already exist.

In non-blocking mode, if file is NULL, only one file or directory can be created at any one time,
since a single static FATFi le is used for temporary storage. Each time you call this function,
pass the same d i rname pointer (not just the same string contents).

Valid filenames are limited to an 8 character filename and 3 character extension separated by a
period; this is commonly known as the “8.3” format. Examples include but are not limited to
“12345678.123”, “filename.txt”, and “webpagel.htm”.

PARAMETERS

part Pointer to the partition being used.

filename Pointer to the full pathname of the file to be created.

alloc_size Initial number of bytes to pre-allocate. Note that at least one cluster will be
allocated. If there is not enough space beyond the first cluster for the re-
quested allocation amount, the file will be allocated with whatever space is
available on the partition, but no error code will be returned. If not even the
first cluster is allocated, the ~-ENOSPC error code will return. This initial
allocation amount is rounded up to the next whole number of clusters.

file If not NULL, the created file is opened and accessible using this handle.

If NULL, the file is closed after it is created.

RETURN VALUE

0O: success.

-EINVAL: part, filename, alloc_size, or Tile contain invalid values.

—ENOENT: the parent directory does not exist.

—-ENOSPC: no allocatable sectors were found.

—-EPERM: write-protected, trying to create a file on a read-only partition.

—-EBUSY: the device is busy (non-blocking mode only).

-EFSTATE: if non-blocking, but a previous sequence of calls to this function (of
fat_CreateFile) has not completed but you are trying to create a different file or directory. You
must complete the sequence of calls for each file or directory i.e. keep calling until something
other than —EBUSY is returned. This code is only returned if you pass a NULL file pointer, or
if the file pointer is not NULL and the referenced file is already open.

-EPATHSTR: Bad file/directory path string. Valid filenames are limited to the 8.3 format.

Other negative values indicate /O error, etc.

Dynamic C Functions rabbit.com

83

http://www.rabbit.com

fat _CreateFile (cont’d)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat ReadDir, fat Write

fat CreateTime

int fat CreateTime(fat_dirent *entry, struct tm *t);

DESCRIPTION

This function puts the creation date and time of the entry into the system time structure t. The
function does not fill in the tm_wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.

-EINVAL.: invalid directory entry or time pointer
LIBRARY

FAT.LIB

SEE ALSO
fat_ReadDir, fat Status, fat _LastAccess, fat LastWrite

84 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat _Delete

int fat Delete(fat_part *part, iInt type, char *name);

DESCRIPTION

Deletes the specified file or directory. The type must match or the deletion will not occur. This
routine inserts a deletion code into the directory entry and marks the sectors as available in the
FAT table, but does not actually destroy the data contained in the sectors. This allows an unde-
lete function to be implemented, but such a routine is not part of this library. A directory must
be empty to be deleted.

PARAMETERS
part Handle for the partition being used.
type Must be a FAT file (FAT_FILE) or a FAT directory (FAT_DIR), depend-
ing on what is to be deleted.
name Pointer to the full path name of the file/directory to be deleted.

RETURN VALUE

0: success.

—-E10: device 1/O error.

-EINVAL: part, type, or name contain invalid values.

-EPATHSTR: name is not a valid path/name string.

—-EPERM: the file is open, write-protected, hidden, or system.

-ENOTEMPTY: the directory is not empty.

—ENOENT: the file/directory does not exist.

—-EBUSY: the device is busy. (Only if non-blocking.)

—-EPSTATE: if the partition is busy; i.e., there is an allocation in progress. (Only if non-block-

ing.)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Split, fat Truncate, fat_Close

Dynamic C Functions rabbit.com

85

http://www.rabbit.com

fat_EnumDevice

int fat_EnumDevice(mbr_drvr *driver, mbr_dev *dev, int devnum,
char *sig, int norecovery);

DESCRIPTION

This routine is called to learn about the devices present on the driver passed in. The device will
be added to the linked list of enumerated devices. Partition pointers will be set to NULL, indi-
cating they have not been enumerated yet. Partition entries must be enumerated separately.

The signature string is an identifier given to the write-back cache, and must remain consistent
between resets so that the device can be associated properly with any battery-backed cache en-
tries remaining in memory.

This function is called by fat_AutoMount() and fat_Init().

PARAMETERS
driver Pointer to an initialized driver structure set up during the initialization of
the storage device driver.
dev Pointer to the device structure to be filled in.
devnum Physical device number of the device.
sig Pointer to a unique signature string. Note that this value must remain the

same between resets.

norecovery Boolean flag - set to True to ignore power-recovery data. True is any value
except zero.

RETURN VALUE

0O: success.

—-E10: error trying to read the device or structure.

-EINVAL: devnum invalid or does not exist.

—-ENOMEM: memory for page buffer/RJ is not available.

—-EUNFORMAT: the device is accessible, but not formatted. You may use it provided it is format-
ted/partitioned by either this library or by another system.

-EBADPART: the partition table on the device is invalid.

—-ENOPART: the device does not have any FAT partitions. This code is superseded by any other
error detected.

—-EEXIST: the device has already been enumerated.

—-EBUSY: the device is busy (nonblocking mode only).

LIBRARY
FAT_LIB

SEE ALSO
fat AutoMount, fat_Init, fat _EnumPartition

86 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_EnumPartition

int fat_EnumPartition(mbr_dev *dev, int pnum, fat_part *part);

DESCRIPTION

This routine is called to enumerate a partition on the given device. The partition information
will be put into the FAT partition structure pointed to by part. The partition pointer will be
linked to the device structure, registered with the write-back cache, and will then be active. The
partition must be of a valid FAT type.

This function is called by fat_AutoMount() and fat_Init().

PARAMETERS

dev Pointer to an MBR device structure.

pnum Partition number to link and enumerate.

part Pointer to an FAT partition structure to be filled in.
RETURN VALUE

0O: success.

—-E10: error trying to read the device or structure.

—EINVAL.: partition number is invalid.

-EUNFORMAT: the device is accessible, but not formatted.

—-EBADPART: the partition is not a FAT partition.

—-EEXIST: the partition has already been enumerated.
-EUNFLUSHABLE: there are no flushable sectors in the write-back cache.
—-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO
fat EnumDevice, fat FormatPartition, fat MountPartition

Dynamic C Functions rabbit.com

87

http://www.rabbit.com

fat_FileSize

int fat_FileSize(FATTfile *file, unsigned long *length);

DESCRIPTION

Puts the current size of the file in bytes into length.

PARAMETERS
file Handle for an open file.
length Pointer to the variable where the file length (in bytes) is to be placed.

RETURN VALUE
0: success.

-EINVAL: Fileisinvalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Seek

88

rabbit.com

Dynamic C Functions

http://www.rabbit.com

fat_FormatDevice

int fat_FormatDevice(mbr_dev *dev, int mode);

DESCRIPTION

Formats a device. The device will have a DOS master boot record (MBR) written to it. Existing
partitions are left alone if the device was previously formatted. The formatted device will be
registered with the write-back cache for use with the FAT library. The one partition mode will
instruct the routine to create a partition table, with one partition using the entire device. This
mode only works if the device is currently unformatted or has no partitions.

If needed (i.e., there is no MBR on the device), this function is called by fat_AutoMount()
if its flags parameter allows it.

PARAMETERS
dev Pointer to the data structure for the device to format.
mode Mode:
0 = normal (use the partition table in the device structure)
1 = one partition using the entire device (errors occur if there are already
partitions in the device structure)
3 = force one partition for the entire device (overwrites values already in
the device structure)
RETURN
0O: success.

—-E10: error trying to read the device or structure.
—-EINVAL: device structure is invalid or does not exist.
—-ENOMEM: memory for page buffer/RJ is not available.
—-EEXIST: the device is already formatted.

—-EPERM: the device already has mounted partition(s).
—-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat_Init, fat_EnumDevice, fat PartitionDevice,
fat FormatPartition

Dynamic C Functions rabbit.com 89

http://www.rabbit.com

fat_FormatPartition

int fat_FormatPartition(mbr_dev *dev, fat_part *part, int pnum,
int type, char *label, int (Pusr)();

DESCRIPTION

Formats partition number pnum according to partition type. The partition table information in
the device must be valid. This will always be the case if the device was enumerated. The parti-
tion type must be a valid FAT type. Also note that the partition is not mounted after the partition
is formatted. If ~-EBUSY is returned, the partition structure must not be disturbed until a subse-
quent call returns something other than —-EBUSY.

If needed (i.e., Fat_MountPartition() returned error code —EBADPART), this function
is called by fat_AutoMount().

PARAMETERS
dev

part

pnum

type
label

usr

RETURN VALUE

0: success.

Pointer to a device structure containing partitions.

Pointer to a FAT partition structure to be linked. Note that opstate must
be set to zero before first call to this function if the library is being used in
the non-

blocking mode.

Partition number on the device (0-3).
Partition type.

Pointer to a partition label string.

Pointer to a user routine.

—-E10: error in reading the device or structure.

—-EINVAL: the partition number is invalid.

—EPERM: write access is not allowed.

-EUNFORMAT: the device is accessible, but is not formatted.
—-EBADPART: the partition is not a valid FAT partition.
—EACCES: the partition is currently mounted.

—-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY

FAT_LIB

SEE ALSO

fat AutoMount, fat_Init, fat FormatDevice, fat EnumDevice,
fat PartitionDevice, fat_EnumPartition

90

rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Free

int fat_Free(fat_part *part);

DESCRIPTION

This function returns the number of free clusters on the partition.

PARAMETERS

part Handle to the partition.

RETURN VALUE

Number of free clusters on success
0: partition handle is bad or partition is not mounted.

LIBRARY
FAT.LIB

SEE ALSO
fat_EnumPartition, fat_MountPartition

Dynamic C Functions rabbit.com

91

http://www.rabbit.com

fat GetAttr

int fat_GetAttr(FATfile *file);

DESCRIPTION
This function gets the given attributes to the file. Use the defined attribute flags to check the
value:
 FATATTR_READ_ONLY - The file can not be modified.
* FATATTR_HIDDEN - The file is not visible when doing normal operations.
* FATATTR_SYSTEM - This is a system file and should be left alone.
o FATATTR_VOLUME_ID - This is the name of a logical disk.
 FATATTR_DIRECTORY - This is a directory and not a file.
* FATATTR_ARCHIVE - This tells you when the file was last modified.
o FATATTR_LONG_NAME - This is a FAT32 or long file name. It is not supported.

PARAMETERS

file Handle to the open file.

RETURN VALUE

Attributes on success
—-EINVAL: invalid file handle.

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat Status

92 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat _GetName

int fat_GetName(fat_dirent *entry, char *buf, word flags);

DESCRIPTION

Translates the file or directory name in the fat_d1i rent structure into a printable name. FAT
file names are stored in a strict fixed-field format in the Fat_dirent structure (returned from
fat_Status, for example). This format is not always suitable for printing, so this function
should be used to convert the name to a printable null-terminated string.

PARAMETERS
entry
buf

flags

RETURN VALUE
0: success.

Pointer to a directory entry obtained by fat_Status().

Pointer to a char array that will be filled in. This array must be at least 13
characters long.

May be one of the following:
* 0 - standard format, e.g., AUTOEXEC .BAT or XYZ_.GIF

* FAT_LOWERCASE - standard format, but make lower case.

—-EINVAL: invalid (NULL) parameter(s).

LIBRARY
FAT_LIB

SEE ALSO

fat ReadDir, fat Status

Dynamic C Functions

rabbit.com

93

http://www.rabbit.com

fat_GetPartition

int fat_GetPartition (fat_part **part, char **file
fullpath);

DESCRIPTION

Split a full pathname (e.g., “a:/filename.txt”) into a paritition and filename.

Examples (with FAT_USE_FORWARDSLASH defined):
a:/filename.txt > partition A, /filename.txt
/b/filename.txt > partition B, /filename.txt
C:filename.txt > partition C, /filename.txt

Examples (without FAT_USE_FORWARDSLASH defined):
a:\filename.txt > partition A, \filename.txt
\b\filename.txt > partition B, \filename.txt

C:filename.txt > partition C, \filename.txt

, char *

PARAMETERS
part Memory location to store a pointer to the fat partition (drive letter).
file Memory location to store a pointer into fullpath (parameter 3) where the
filename begins.
fullpath Pathname to parse.

RETURN VALUE
0: Success
—EINVAL.: unable to parse <fullpath>
LIBRARY
FAT.LIB

94 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fat_Init

int fat_Init(int pnum, mbr_drvr *driver, mbr_dev *dev, fat_part
*part, Int norecovery);

DESCRIPTION

Initializes the default driver in MBR_DRIVER__INIT, enumerates device 0, then enumerates
and mounts the specified partition. This function was replaced with the more powerful
fat_AutoMount().

fat_Init() will only work with device 0 of the default driver. This driver becomes the pri-
mary driver in the system.

The application can start calling any directory or file functions after this routine returns success-
fully.

The desired partition must already be formatted. If the partition mount fails, you may call the
function again using a different partition number (pnum). The device will not be initialized a

second time.

PARAMETERS
pnum Partition number to mount (0-3).
driver Pointer to the driver structure to fill in.
dev Pointer to the device structure to fill in.
part Pointer to the partition structure to fill in.

norecovery Boolean flag - set to True to ignore power-recovery data. True is any value
except zero.

RETURN VALUE

0O: success.

—-E10: device 1/0O error.

-EINVAL: pnum, driver, or device, or part is invalid.
—EUNFORMAT: the device is not formatted.

—-EBADPART: the partition requested is not a valid FAT partition.
—-ENOPART: no partitions exist on the device.

—-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat _EnumDevice, fat EnumPartition,
fat MountPartition

Dynamic C Functions rabbit.com

95

http://www.rabbit.com

fat_Ini1tUCOSMutex

void fat_InitUCOSMutex(int mutexPriority);

DESCRIPTION

This function was introduced in FAT version 2.10. Prior versions of the FATfile system are com-
patible with uC/OS-I1 only if FAT API calls are confined to one uC/OS-11 task. The FAT APl is
not reentrant from multiple tasks without the changes made in FAT version 2.10. If you wish to
use the FAT file system from multiple uC/COS tasks, you must do the following:

1. The statement #define FAT_USE_ UCOS_ MUTEX must come before the statement:
#use FAT.LIB

2. After calling OSInit() and before starting any tasks that use the FAT, call
fat_InitUCOSMutex(mutexPriority). The parameter mutexPriorityisa
MC/OS-I1 task priority that must be higher than the priorities of all tasks that call FAT API func-
tions.

3. You must not call low-level, non-API FAT or write-back cache functions. Only call FAT func-
tions appended with “fat_" and with public function descriptions.

4. Run the FAT in blocking mode (#define FAT_BLOCK).

Mutex timeouts or other errors will cause a run-time error —-ERR_FAT_MUTEX_ ERROR.
MC/OS-11 may raise the priority of tasks using mutexes to prevent priority inversion.

The default mutex time-out in seconds is given by FAT_MUTEX_TIMEOUT _SEC, which de-
faults to 5 seconds if not defined in the application before the statement #use FAT_LIB.

PARAMETERS

mutexPriority A uC/OS-lltask priority that MUST be higher than the priorities of all
tasks that call FAT API functions.

RETURN VALUE

None: success.
-ERR_FAT_MUTEX_ERROR: A run-time error causes an exception and the application will
exit with this error code.

LIBRARY
FAT.LIB

SEE ALSO
fat AutoMount, fat_Init

96 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_IsClosed

int fat_IsClosed(FATFile far * file);

DESCRIPTION
Returns non-zero if the FATfile passed is not open and zero if open.

(Currently implemented as a macro, but may be modified to be an actual function in a future
release.)

PARAMETER

file Pointer to a FATfile structure to check.

RETURN VALUE
1: file is closed

0: file is open
LIBRARY

fat._lib
SEE ALSO

fat ReadDir, fat Status, fat LastAccess, fat LastWrite

Dynamic C Functions rabbit.com

97

http://www.rabbit.com

fat_IsOpen

int fat_IsOpen(FATTile far * Tile);

DESCRIPTION
Returns TRUE if the FATfile passed is in an open state and FALSE otherwise.

(Currently implemented as a macro, but may be modified to be an actual function in a future
release.)

PARAMETER
file Pointer to a FATfile structure to check.

RETURN VALUE

10 if file is open
0 if file is closed

LIBRARY
fat.lib

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

98 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat LastAccess

int fat_LastAccess(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the last access date of the specified entry into the system time structure t. The time is al-
ways set to midnight. The function does not fill in the tm_wday field in the system time struc-

ture.
PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0O: success.
—EINVAL.: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO
fat_ReadDir, fat _Status, fat CreateTime, fat LastWrite

Dynamic C Functions rabbit.com

99

http://www.rabbit.com

fat _LastWrite

int fat_LastWrite(fat_dirent *entry, struct tm *t);

DESCRIPTION

Puts the date and time of the last write for the given entry into the system time structure t. The
function does not fill in the tm_wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0O: success.
—-EINVAL.: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat CreateTime, fat LastAccess

100 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_MountPartition

int fat_MountPartition(fat_part *part);

DESCRIPTION

Marks the enumerated partition as mounted on both the FAT and MBR level. The partition
MUST be previously enumerated with fat_EnumPartition().

This function is called by fat_AutoMount() and fat_Init().
PARAMETER
part Pointer to the FAT partition structure to mount.

RETURN VALUE
0O: success.
—-EINVAL: device or partition structure or part is invalid.
-EBADPART: the partition is not a FAT partition.
—-ENOPART: the partition does not exist on the device.
—-EPERM: the partition has not been enumerated.

—-EACCESS: the partition is already linked to another fat_part structure.
—-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT_LIB

SEE ALSO
fat _EnumPartition, fat UnmountPartition

Dynamic C Functions rabbit.com 101

http://www.rabbit.com

fat_Open

int fat Open(fat_part *part, char *name, int type, int ff,

FATfile *file,

DESCRIPTION

long *prealloc);

Opens a file or directory, optionally creating it if it does not already exist. If the function returns
-EBUSY, call it repeatedly with the same arguments until it returns something other than

-EBUSY.

PARAMETERS
part
name
type
f

prealloc

Handle for the partition being used.
Pointer to the full path name of the file to be opened/created.
FAT_FILE or FAT_DIR, depending on what is to be opened/created.

File flags, must be one of:

* FAT_OPEN - Object must already exist. If it does not exist, —-ENOENT
will be returned.

FAT_CREATE - Object is created only if it does not already exist
FAT_MUST_CREATE - Object is created, and it must not already exist.

FAT_READONLY - No write operations (this flag is mutually exclusive
with any of the CREATE flags).

FAT_SEQUENT IAL - Optimize for sequential reads and/or writes. This
setting can be changed while the file is open by using the

fat_fcntl) function.

Pointer to an empty FAT file structure that will act as a handle for the newly
opened file. Note that you must memset this structure to zero when you
are using the non-blocking mode before calling this function the first time.
Keep calling until something other than —EBUSY is returned, but do not
change anything in any of the parameters while doing so.

An initial byte count if the object needs to be created. This number is
rounded up to the nearest whole number of clusters greater than or equal to
1. This parameter is only used if one of the * CREATE flag is set and the
object does not already exist. On return, *preal oc is updated to the ac-
tual number of bytes allocated. May be NULL, in which case one cluster is
allocated if the call is successful.

102

rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_Open (cont’d)

RETURN VALUE

0O: success.

—-EINVAL: invalid arguments. Trying to create volume label, or conflicting flags.

—ENOENT: file/directory could not be found.

-EPATHSTR: Invalid path string for parent directory

—EEXIST: object existed when FAT_MUST_CREATE flag set.

—-EPERM: trying to create a file/directory on a read-only partition.

-EMFILE - too many open files. If you get this code, increase the FAT_MAXMARKERS defi-
nition in the BIOS.

Other negative values indicate 1/O error, etc.
Non-blocking mode only:

—-EBUSY: the device is busy (nonblocking mode only).

—-EFSTATE - file structure is not in a valid state. Usually means it was not zerod before calling
this function for the first time (for that file) struct, when in non-blocking mode; can also occur
if the same file struct is opened more than once.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Close

Dynamic C Functions rabbit.com 103

http://www.rabbit.com

fat_OpenDir

int fat OpenDir(fat_part *part, char *dirname, FATfile *dir);

DESCRIPTION
Opens a directory for use, filling in the FATFi le handle.

PARAMETERS
part Pointer to the partition structure being used.
dirname Pointer to the full path name of the directory to be opened or created.
dir Pointer to directory requested.

RETURN VALUE

0O: success

—EINVAL.: invalid argument.

—ENOENT: the directory cannot be found.

—-EBUSY: the device is busy (Only if non-blocking).

Other negative values are possible from the fat_Open() call.

LIBRARY
FAT_LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat Close

104 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_PartitionDevice

int fat_PartitionDevice(mbr_dev *dev, int pnum);

DESCRIPTION

This function partitions the device by modifying the master boot record (MBR), which could
destroy access to information already on the device. The partition information contained in the
specified mbr_dev structure must be meaningful, and the sizes and start positions must make
sense (no overlapping, etc.). If this is not true, you will get an —~E INVAL error code. The device
being partitioned must already have been formatted and enumerated.

This function will only allow changes to one partition at a time, and this partition must either
not exist or be of a FAT type.

The validity of the new partition will be verified before any changes are done to the device. All
other partition information in the device structure (for those partitions that are not being modi-
fied) must match the values currently existing on the MBR. The type given for the new partition
must either be zero (if you are deleting the partition) or a FAT type.

You may not use this function to create or modify a non-FAT partition.

PARAMETERS
dev Pointer to the device structure of the device to be partitioned.
pnum Partition number of the partition being modified.

RETURN VALUE
0O: success.
—-E10: device 1/0O error.
—EINVAL: pnum or device structure is invalid.
—EUNFORMAT: the device is not formatted.
—-EBADPART: the partition is a non-FAT partition.
—-EPERM: the partition is mounted.
—-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat FormatDevice, fat _EnumDevice, fat FormatPartition

Dynamic C Functions rabbit.com 105

http://www.rabbit.com

fat_Read

int fat Read(FATfile *file, char *buf, int len);

DESCRIPTION

Given File, buf, and len, this routine reads Ien characters from the specified file and plac-
es the characters into buf. The function returns the number of characters actually read on suc-
cess. Characters are read beginning at the current position of the file and the position pointer
will be left pointing to the next byte to be read. The file position can be changed by the
fat_Seek() function. If the file contains fewer than Ien characters from the current position
to the EOF, the transfer will stop at the EOF. If already at the EOF, 0 is returned. The Ien pa-
rameter must be positive, limiting reads to 32767 bytes per call.

PARAMETERS
file Handle for the file being read.
buf Pointer to the buffer where data are to be placed.
len Length of data to be read.

RETURN VALUE

Number of bytes read: success. May be less than the requested amount in non-blocking mode,
or if EOF was encountered.

—-EEOF: starting position for read was at (or beyond) end-of-file.

—-E10: device 1/O error.

-EINVAL: File, buf, or Ien, contain invalid values.

—-EPERM: the file is locked.

—ENOENT: the file/directory does not exist.

-EFSTATE: file is in inappropriate state (Only if non-blocking).

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat Write, fat_Seek

106 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat _ReadDir

int fat_ReadDir(FATfile *dir, fat_dirent *entry, int mode);

DESCRIPTION

Reads the next entry of the desired type from the given directory, filling in the entry structure.

PARAMETERS
dir
entry

mode

Pointer to the handle for the directory being read.

Pointer to the handle to the entry structure to fill in.

0 = next active file or directory entry including read only (no hidden, sys,
label, deleted or empty)

A nonzero value sets the selection based on the following attributes:

FATATTR_READ_ONLY - include read-only entries
FATATTR_HIDDEN - include hidden entries
FATATTR_SYSTEM - include system entries
FATATTR_VOLUME_ID - include label entries
FATATTR_DIRECTORY - include directory entries
FATATTR_ARCHIVE - include modified entries
FAT_FIL_RD_ONLY - filter on read-only attribute
FAT_FIL_HIDDEN - filter on hidden attribute
FAT_FIL_SYSTEM - filter on system attribute
FAT_FIL_LABEL - filter on label attribute
FAT_FIL_DIR - filter on directory attribute
FAT_FIL_ARCHIVE - filter on modified attribute

The FAT_INC_* flags default to FAT_INC_ACTIVE if none set:

FAT_INC_DELETED - include deleted entries
FAT_INC_EMPTY - include empty entries
FAT_INC_LNAME - include long name entries
FAT_INC_ACTIVE - include active entries

The following predefined filters are available:

FAT_INC_ALL - returns ALL entries of ANY type

FAT _INC_DEF - default (files and directories including read-only and
archive)

Note: Active files are included by default unless FAT_INC_DELETED,
FAT _INC_EMPTY, or FAT_INC_LNAME is set. Include flags become the desired filter
value if the associated filter flags are set.

Dynamic C Functions

rabbit.com

107

http://www.rabbit.com

fat_ReadDir (cont’d)

EXAMPLES OF FILTER BEHAVIOR
mode = FAT_INC_DEF | FATFIL_HIDDEN | FATATTR_HIDDEN
would return the next hidden file or directory (including read-only and archive)
mode = FAT_INC_DEF|FAT_FIL_HIDDEN|FAT_FIL_DIR]|FATATTR_HIDDEN
would return next hidden directory (but would not return any hidden file)

mode = FAT_INC_DEF|FAT_FIL_HIDDEN|FAT_FIL_DIR]
FATATTR_HIDDEN & ~FATATTR_DIRECTORY

would return next hidden file (but would not return any hidden directory)
mode = FAT_INC_ALL & ~FAT_INC_EMPTY

would return the next non-empty entry of any type

RETURN VALUE

0: success.

-EINVAL: invalid argument.

—ENOENT: directory does not exist

—-EEOF: no more entries in the directory

—-EFAULT: directory chain has link error

—-EBUSY: the device is busy (non-blocking mode only)

Other negative values from the fat_Open() call are also possible.

LIBRARY
FAT_LIB

SEE ALSO
fat OpenDir, fat Status

108 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_Seek

int fat_Seek(FATfile *file, long pos, int whence);

DESCRIPTION

Positions the internal file position pointer. Fat_Seek () will allocate clusters to the file if nec-
essary, but will not move the position pointer beyond the original end of file (EOF) unless doing
a SEEK_RAW. In all other cases, extending the pointer past the original EOF will preallocate the
space that would be needed to position the pointer as requested, but the pointer will be left at
the original EOF and the file length will not be changed. If this occurs, an EOF error will be
returned to indicate the space was allocated but the pointer was left at the EOF.

PARAMETERS
file

pos

whence

Pointer to the file structure of the open file.

Position value in number of bytes (may be negative). This value is inter-
preted according to the third parameter, whence.

Must be one of the following:

e SEEK_SET - pos is the byte position to seek, where 0 is the first byte
of the file. If pos is less than 0, the position pointer is set to 0 and no
error code is returned. If pos is greater than the length of the file, the po-
sition pointer is set to EOF and error code -EEOF is returned.

» SEEK_CUR - seek pos bytes from the current position. If pos is less
than 0 the seek is towards the start of the file. If this goes past the start
of the file, the position pointer is set to 0 and no error code is returned.
If pos is greater than O the seek is towards EOF. If this goes past EOF
the position pointer is set to EOF and error code —EEOF is returned.

» SEEK_END - seek to pos bytes from the end of the file. That is, for a
file that is x bytes long, the statement:

fat_Seek (&my file, -1, SEEK _END);

will cause the position pointer to be set at x-1 no matter its value prior
to the seek call. If the value of pos would move the position pointer past
the start of the file, the position pointer is set to O (the start of the file)
and no error code is returned. If pos is greater than or equal to 0, the
position pointer is set to EOF and error code —EEOF is returned..

o SEEK_RAW - is similar to SEEK_SET, but if pos goes beyond EOF,
using SEEK_RAW will set the file length and the position pointer to
pos.

Dynamic C Functions

rabbit.com

109

http://www.rabbit.com

fat_Seek (cont’d)

RETURN VALUE

O: success.

—-E10: device 1/0O error.

-EINVAL: File, pos, or whence contain invalid values.
—-EPERM: the file is locked or writes are not permitted
—ENOENT: the file does not exist.

—-EEOF: space is allocated, but the pointer is left at original EOF.
—-ENOSPC: no space is left on the device to complete the seek.
—-EBUSY: the device is busy (Only if non-blocking).
—-EFSTATE: if file in inappropriate state (Only if non-blocking).

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat Read, fat Write, fat xWrite

110 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat SetAttr

int fat_SetAttr(FATfile *file, iInt attr);

DESCRIPTION
This function sets the given attributes to the file. Use defined attribute flags to create the set val-
ues.
PARAMETERS
file Handle to the open file.
attr Attributes to set in file. For attribute description see fat_GetAttr().

May be one or more of the following:
* FATATTR_READ_ONLY

* FATATTR_HIDDEN

* FATATTR_SYSTEM

* FATATTR_VOLUME_ID

* FATATTR_DIRECTORY

* FATATTR_ARCHIVE

* FATATTR_LONG_NAME

RETURN VALUE

0O: Success

—-E10: on device 10 error

—-EINVAL: invalid open file handle

—-EPERM: if the file is locked or write not permitted
—-EBUSY: if the device is busy. (Only if non-blocking)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Status

Dynamic C Functions rabbit.com 111

http://www.rabbit.com

fat_Split

int fat_Split(FATFile *file, long where, char *newfile);

DESCRIPTION

Splits the original file at where and assigns any left over allocated clusters to newfile. As
the name implies, newFi le is a newly created file that must not already exist. Upon comple-
tion, the original file is closed and the file handle is returned pointing to the created and opened
new file. The file handle given must point to a file of type FAT_FILE. There are internal static
variables used in this function, so only one file split operation can be active. Additional requests
will be held off with ~-EBUSY returns until the active split completes.

PARAMETERS

file Pointer to the open file to split.

where May be one of the following:
» >0 - absolute byte to split the file. If the absolute byte is beyond the

EOF, file is split at EOF.

« FAT_BRK_END - split at EOF.
* FAT_BRK_POS - split at current file position.

newfile Pointer to the absolute path and name of the new file created for the split.

RETURN VALUE

0: success.

—-E10: device 1/0O error.

—-EINVAL: File has invalid references.

-EPATHSTR: newFi le is not a valid path/name string.

—-EEOF: no unused clusters are available for newfi le. ¥ le will be unchanged and open,
newfi le is not created.

-EPERM: File is in use, write-protected, hidden, or system.
—-ENOENT: 1 e does not exist.

-ETYPE: file is not a FAT file type.

—-EBUSY: the device is busy (Only non-blocking mode).
-EFSTATE: if file in inappropriate state (Only non-blocking mode).

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat Truncate, fat Close

112 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Status

int fat_Status(fat_part *part, char *name, fat_dirent *entry);

DESCRIPTION

Scans for the specified entry and fills in the entry structure if found without opening the direc-
tory or entry.

PARAMETERS
part Pointer to the partition structure being used.
name Pointer to the full path name of the entry to be found.
entry Pointer to the directory entry structure to fill in.

RETURN VALUE

0O: success.

—-E10: device 1/0O error.

-EINVAL: part, Filepath, or entry are invalid.

—ENOENT: the file/directory/label does not exist.

—-EBUSY: the device is busy (Only non-blocking mode). If you get this error, call the function
again without changing any parameters.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir

Dynamic C Functions rabbit.com

113

http://www.rabbit.com

fat_SyncFile

int fat_SyncFile(FATTile *file);

DESCRIPTION
Updates the directory entry for the given file, committing cached size, dates, and attribute fields
to the actual directory. This function has the same effect as closing and re-opening the file.

PARAMETERS

file Pointer to the open file.

RETURN VALUE

0O: success.
-EINVAL: File s invalid.
—-EPERM - this operation is not permitted on the root directory.

—-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the update.
—-EFSTATE - file not open or in an invalid state.

Any other negative value: I/O error when updating the directory entry.

LIBRARY
FAT.LIB

SEE ALSO
fat Close, fat Open, fat OpenDir

114 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_SyncPartition

int fat_SyncPartition(fat_part *part);

DESCRIPTION
Flushes all cached writes to the specified partition to the actual device.

PARAMETER
part Pointer to the partition to be synchronized.

RETURN VALUE

0O: success.
-EINVAL: part is invalid.
—-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the sync.

Any other negative value: I/O error when updating the device.

LIBRARY
FAT.LIB

SEE ALSO
fat Close, fat _SyncFile, fat_UnmountPartition

Dynamic C Functions rabbit.com 115

http://www.rabbit.com

fat _Tell

int fat_Tell(FATfile *file, unsigned long *pos);

DESCRIPTION

Puts the value of the position pointer (that is, the number of bytes from the beginning
of the file) into pos. Zero indicates the position pointer is at the beginning of the file.

HC/OS-11 USERS:

= The FAT API is not reentrant. To use the FAT from multiple pC/OS-II tasks, put the
following statement in your application:

#define FAT USE_UCOS_MUTEX

= Mutex timeouts or other mutex errors will cause the run-time error
ERR_FAT_MUTEX_ ERROR. The default mutex timeout is 5 seconds and can be
changed by #define'ing a different value for FAT_MUTEX_TIMEOUT_SEC.

* You MUST call fat_InitUCOSMutex() after calling OSInit() and before calling
any other FAT API functions.

« You must run the FAT in blocking mode (#define FAT_BLOCK).

= You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “Ffat_" and with public function descriptions.

PARAMETERS
file Pointer to the file structure of the open file
pos Pointer to the variable where the value of the file position pointer is to be

placed.

RETURN VALUE

0: success.
—-E10: position is beyond EOF.
-EINVAL: Fileisinvalid.

LIBRARY
FAT.LIB

SEE ALSO
fat_Seek, fat Read, fat Write, fat xWrite

116 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_tick

int fat_tick(void);

DESCRIPTION

Drive device 1/0 completion and periodic flushing. It is not generally necessary for the appli-
cation to call this function; however, if it is called regularly (when the application has nothing
else to do) then file system performance may be improved.

RETURN VALUE
Currently always 0.

LIBRARY
FATWTC.LIB

Dynamic C Functions rabbit.com 117

http://www.rabbit.com

fat Truncate

int fat_Truncate(FATTile *file, long where);

DESCRIPTION

Truncates the file at where and frees any left over allocated clusters. The file must be a
FAT_FILE type.

PARAMETERS
file Pointer to the open file to truncate.
where One of the following:

* >0 - absolute byte to truncate the file. The file is truncated at EOF if
the absolute byte is beyond EOF.

 FAT_BRK_END - truncate at EOF.
» FAT_BRK_POS - truncate at current file position.

RETURN VALUE

0O: success.

—-E10: device 1/0O error.

-EINVAL: File isinvalid.

-EPERM: File is in use, write-protected, hidden, or system.
—ENOENT: the file does not exist.

-ETYPE: file is not a FAT file type.

—-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking)

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat_Split

118 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_UnmountDevice

int fat_UnmountDevice(mbr_dev * dev);

DESCRIPTION

Unmounts all FAT partitions on the given device and unregisters the device from the cache sys-
tem. This commits all cache entries to the device and prepares the device for power down or
removal. The device structure given must have been enumerated with fat_EnumDevice().

This function was introduced in FAT module version 2.06. Applications using prior versions of
the FAT module would call fat_UnmountPartition() instead.

PARAMETER

dev Pointer to a FAT device structure to unmount.

RETURN VALUE

0O: success.
—EINVAL.: device structure (dev) is invalid.
—-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat EnumDevice, fat AutoMount, fat _UnmountPartition

Dynamic C Functions rabbit.com

119

http://www.rabbit.com

fat_UnmountPartition

int fat_UnmountPartition(fat_part *part);

DESCRIPTION

Marks the enumerated partition as unmounted on both the FAT and the master boot record lev-
els. The partition must have been already enumerated using fat_EnumPartition()
(which happens when you call fat_AutoMount()).

To unmount all FAT partitions on a device call fat_UnmountDevice(), a function intro-
duced with FAT version 2.06. It not only commits all cache entries to the device, but also pre-
pares the device for power down or removal.

Note: The partitions on a removable device must be unmounted in order to flush data
before removal. Failure to unmount a partition that has been written could cause damage
to the FAT file system.

PARAMETERS

part Pointer to a FAT partition structure to unmount.

RETURN VALUE

0O: success.

—EINVAL: device or partition structure or pnum is invalid.
—-EBADPART: the partition is not a FAT partition.
—-ENOPART: the partition does not exist on the device.
—-EPERM: the partition has not been enumerated.

—-EBUSY: the device is busy (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat EnumPartition, fat MountPartition, fat _UnmountDevice

120 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Write

int fat Write(FATFfile *file, char *buf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in
the file. Characters will be copied from the string pointed to by buf. The Ien variable controls
how many characters will be written. This can be more than one sector in length, and the write
function will allocate additional sectors if needed. Data is written into the file starting at the cur-
rent file position regardless of existing data. Overwriting at specific points in the file can be ac-
complished by calling the Fat_Seek () function before calling fat_Write().

PARAMETERS
file Handle for the open file being written.
buf Pointer to the buffer containing data to write.
len Length of data to be written.

RETURN VALUE

Number of bytes written: success (may be less than Ien, or zero if non-blocking mode)
—-E10: device 1/O error.

-EINVAL: File, buf, or Ien contain invalid values.

—ENOENT: file does not exist.

—ENOSPC: no space left on the device to complete the write.

—EFAULT: problem in file (broken cluster chain, etc.).

—-EPERM: the file is locked or is write-protected.

—-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat Read, fat xWrite, fat Seek

Dynamic C Functions rabbit.com 121

http://www.rabbit.com

fat_xRead

fat_xRead(FATFile * file, char far * buf, int len);

DESCRIPTION
Given File, buf and Ien, this routine reads len characters from the specified file and places
the characters into string buf. Returns the number of characters actually read on success.

Characters will be read beginning at the current position of the file and the position pointer will
be left pointing to the next byte to be read. The file position can be manually set with the
Tfat_Seek() function. If the file contains less the “len” characters from the current position
to the end of the file (EOF), then the transfer will stop at the EOF. If already at the EOF, -EEOF
is returned. The Ien parameter must be positive, limiting reads to 32767 bytes per call.

pHC/OS-11 USERS:

= The FAT API is not reentrant from multiple tasks. To use the FAT from multiple uC/OS-
Il tasks, put the following statement in your application:

#define FAT USE_UCOS_MUTEX

= Mutex timeouts or other mutex errors cause a run-time error ERR_FAT_MUTEX_ ERROR.
The default mutex timeout is 5 seconds and can be changed by #define'ing a different value
for FAT_MUTEX_TIMEOUT_SEC.

= You MUST call fat_InitUCOSMutex() after calling OSInit() and before calling
any other FAT API functions.

= You must run the FAT in blocking mode (#define FAT_BLOCK).

< You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “Ffat_” and with public function descriptions.

PARAMETERS
file Handle for the file being read
buf Pointer to buffer where data is to be placed. May be NULL in order to dis-
card data
len Length of data to be read. If this is zero, then the return code will be ‘1’ if

not at EOF, or ‘0’ if at EOF.

122 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat_xRead (cont’d)

RETURN VALUE

Number of bytes read on Success. May be less than the requested amount in non-blocking
mode, or if EOF was encountered.

—-EEOQF: stating position for read was at (or beyond) EOF.
—-E10: on device 10 error

—EINVAL.: if file, buf, or len contain invalid values
—-EPERM: if the file is locked

—ENOENT: if file/directory does not exist

-EFSTATE: if file in inappropriate state (non-blocking)

SEE ALSO
fat_Open, fat_Read, fat_Write, fat xWrite, fat_Seek

Dynamic C Functions rabbit.com 123

http://www.rabbit.com

fat xWrite

int fat_xWrite(FATTile *file, long xbuf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in the
file. Characters will be copied from the xmem string pointed to by xbuf. The len variable con-
trols how many characters will be written. This can be more than one sector in length, and the
write function will allocate additional sectors if needed. Data will be written into the file starting
at the current file position regardless of existing data. Overwriting at specific points in the file
can be accomplished by calling the fat_Seek() function before calling fat_xWrite().

PARAMETERS
file Handle for the open file being written.
Xbuf xmem address of the buffer to be written.
len Length of data to write.

RETURN VALUE

Number of bytes written: success. (may be less than len, or zero if non-blocking mode)
—-E10: device 1/O error.

-EINVAL: File, xbuf, or Ien contain invalid values.

—ENOENT: the file/directory does not exist.

—ENOSPC: there are no more sectors to allocate on the device.

—EFAULT: there is a problem in the file (broken cluster chain, etc.).

—-EPERM: the file is locked or write-protected.

—-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY
FAT_LIB

SEE ALSO
fat Open, fat Read, fat Write, fat_Seek

124 rabbit.com Dynamic C Functions

http://www.rabbit.com

fclose

void fclose(File* f);
DESCRIPTION
Closes afile.

PARAMETERS

T The pointer to the file to close.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 125

http://www.rabbit.com

fcreate (FS1)

int fcreate(File* f, FileNumber fnum);

DESCRIPTION

Creates a file. Before calling this function, a variable of type Fi Ie must be defined in the ap-
plication program.

File Tile;
fcreate (&file, 1);

PARAMETERS
T The pointer to the created file.

fnum This is a user-defined number in the range of 1 t0127 inclusive. Each file
in the flash file system is assigned a unique number in this range.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

126 rabbit.com Dynamic C Functions

http://www.rabbit.com

fcreate (FS2)

int fcreate(File* f, FileNumber name);

DESCRIPTION

Create a new file with the given “file name” which is composed of two parts: the low byte is the
actual file number (1 to 255 inclusive), and the high byte contains an extent number (1 to
Fs..num_1Ix) on which to place the file metadata. The extent specified by fs_set_Ix()
is always used to determine the actual data extent. If the high byte contains 0, then the default
metadata extent specified by fs_set Ix() is used. The file descriptor is filled in if success-
ful. The file will be opened for writing, so a further call to Fopen_wr () is not necessary.

The number of files which may be created is limited by the lower of FS_MAX_FILES and 255.
This limit applies to the entire filesystem (all logical extents). Once a file is created, its data and
metadata extent numbers are fixed for the life of the file, i.e., until the file is deleted.

When created, no space is allocated in the file system until the first write occurs for the file.
Thus, if the system power is cycled after creation but before the first byte is written, the file will
be effectively deleted. The first write to a file causes one sector to be allocated for the metadata.

Before calling this function, a variable of type Fi e must be defined in the application pro-
gram. (The sizeof () function will return the number of bytes used for the Fi I e data struc-

ture.)
File file;
fcreate (&file, 1);
PARAMETERS
T Pointer to the file descriptor to fill in.
name File number including optional metadata extent number.

RETURN VALUE
0: Success.
10: Failure.

ERRNO VALUES

EINVAL - Zero file number requested, or invalid extent number.

EEXIST - File with given number already exists.

ENFILE - No space is available in the existing file table. If this error occurs, increase the def-
inition of FS_MAX_FILES, a #define constant that should be declared before #use
"fs2_1ib".

LIBRARY
fs2.L1B

SEE ALSO
fcreate _unused (FS2), fs_set Ix (FS2), fdelete (FS2)

Dynamic C Functions rabbit.com 127

http://www.rabbit.com

fcreate _unused (FS1)

FileNumber fcreate_unused(File * F);

DESCRIPTION
Searches for the first unused file number in the range 1 through 127, and creates a file with that
number.

PARAMETERS
T The pointer to the created file.

RETURN VALUE
The FileNumber (1-127) of the new file if success.

LIBRARY
FILESYSTEM.LIB

SEE ALSO
fcreate (FS1)

128 rabbit.com Dynamic C Functions

http://www.rabbit.com

fcreate _unused (FS2)

FileNumber fcreate_unused(File * F);

DESCRIPTION

Create a new file and return the “file name” which is a number between 1 and 255. The new file
will be created on the current default extent(s) as specified by fs_set_Ix(). Other behavior
is the same as fcreate().

PARAMETERS

T Pointer to file descriptor to fill in.

RETURN VALUE

>0: Success, the Fi leNumber (1-255) of the new file.
O: Failure.

ERRNO VALUE
ENFILE - No unused file number available.

LIBRARY
fs2_LIB

SEE ALSO
fcreate (FS2), fs set Ix (FS2), fdelete (FS2)

Dynamic C Functions rabbit.com

129

http://www.rabbit.com

fdelete (FS1)

int fdelete(FileNumber fnum);

DESCRIPTION
Deletes a file.

PARAMETERS

fnum A number in the range 1 to 127 inclusive that identifies the file in the flash
file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

130 rabbit.com Dynamic C Functions

http://www.rabbit.com

fdelete (FS2)

int fdelete(FileNumber name);

DESCRIPTION

Delete the file with the given number. The specified file must not be open. The file number (i.e.
name) is composed of two parts: the low byte contains the actual file number, and the high byte
(if not zero) contains the metadata extent number of the file.

PARAMETERS

name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

LIBRARY
fs2.L1B

ERRNO VALUES

ENOENT - File doesn’t exist, or metadata extent number doesn’t match an existing file.
EBUSY - File is open.
E10 - 1/O error when releasing blocks occupied by this file.

SEE ALSO
fcreate (FS2)

Dynamic C Functions rabbit.com

131

http://www.rabbit.com

fflush (FS2)

int fflush(File * T);

DESCRIPTION

Flush any buffers, associated with the given file, retained in RAM to the underlying hardware
device. This ensures that the file is completely written to the filesystem. The file system does
not currently perform any buffering, however future revisions of this library may introduce
buffering to improve performance.

PARAMETERS

T Pointer to open file descriptor.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EBADFD - file invalid or not open.
EIO - 1/O error.

LIBRARY
fs2.L1B

SEE ALSO
fs_sync (FS2)

132 rabbit.com Dynamic C Functions

http://www.rabbit.com

fftcplx

void fftcplx(int * x, int N, int * blockexp);

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x and re-
turns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An invalid
N causes a RANGE exception. The N-point complex sequence in array X is replaced with its
N-point complex spectrum. The value of blockexp is increased by 1 each time array x has
to be scaled, to avoid arithmetic overflow.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array X.

blockexp Pointer to integer block exponent.

LIBRARY
FFT_LIB

SEE ALSO

fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal,
powerspectrum

Dynamic C Functions rabbit.com 133

http://www.rabbit.com

fftcplxinv

void fftcplxinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the array x
and returns the complex result in X. N must be a power of 2 and lie between 4 and 1024. An
invalid N causes a RANGE exception. The value of blockexp is increased by 1 each time
array X has to be scaled, to avoid arithmetic overflow. The value of blockexp is also de-
creased by log,N to include the 1/N factor in the definition of the inverse DFT

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array X.

blockexp Pointer to integer block exponent.

LIBRARY
FFT_LIB

SEE ALSO
fftcplx, fftreal, fftrealinv, hanncplx, hannreal, powerspectrum

134 rabbit.com Dynamic C Functions

http://www.rabbit.com

fftreal

void fftreal(int * x, int N, int * blockexp);

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real sequence in
array X. The 2N-point real sequence in array X is replaced with its N-point positive-frequency
complex spectrum. The value of blockexp is increased by 1 each time array X has to be
scaled, to avoid arithmetic overflow.

The imaginary part of the X[0] term (stored in x[1]) is set to the real part of the fmax term.

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is
stored in X[[0], the first element in x[[1], and the kth element in x[K].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE exception.

PARAMETERS
X Pointer to 2N-point sequence of real fractions.
N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

LIBRARY
FFT_LIB

SEE ALSO

fftcplx, fftcplxinv, fftrealinv, hanncplx, hannreal,
powerspectrum

Dynamic C Functions rabbit.com

135

http://www.rabbit.com

fftrealinv

void Fftrealinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the 2N-point real sequence corresponding to the N-point, positive-frequency complex
spectrum in array X. The N-point, positive-frequency spectrum contained in array X is replaced
with its corresponding 2N-point real sequence. The value of blockexp is increased by 1 each
time array X has to be scaled, to avoid arithmetic overflow. The value of blockexp is also
decreased by log,N to include the 1/N factor in the definition of the inverse DFT.

The function expects to find the real part of the fmax term in the imaginary part of the zero-fre-
quency X[O] term (stored x[1]).

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is
stored in X[0], the first element in X[1], and the kth element in X[k].

N must be a power of 2 and between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

X Pointer to N-element array of complex fractions.

N Number of complex elements in array X.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO
fftcplx, fftcplxinv, fftreal, hanncplx, hannreal, powerspectrum

136 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash_erasechip

void flash_erasechip(FlashDescriptor * fd);

DESCRIPTION
Erases an entire flash memory chip.

Note: ¥d must have already been initialized with Flash_ init before calling this func-
tion. See Flash_init description for further restrictions.

PARAMETERS

fd Pointer to flash descriptor of the chip to erase.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasesector, flash_gettype, flash_init, flash_read,
flash_readsector, flash sector2xwindow, flash writesector

Dynamic C Functions rabbit.com

137

http://www.rabbit.com

flash_erasesector

int flash_erasesector(FlashDescriptor * fd, word which);

DESCRIPTION
Erases a sector of a flash memory chip.

Note: ¥d must have already been initialized with ¥lash_ init before calling this func-
tion. See Flash_init description for further restrictions.

PARAMETERS
fd Pointer to flash descriptor of the chip to erase a sector of.
which The sector to erase.

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasechip, flash_gettype, flash_init, flash_read,
flash_readsector, flash_sector2xwindow, flash_writesector

138 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash_gettype

int flash_gettype(FlashDescriptor * fd);

DESCRIPTION
Returns the 16-bit flash memory type of the flash memory.

Note: ¥d must have already been initialized with Flash_ init before calling this func-
tion. See Flash_init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the memory to query.

RETURN VALUE
The integer representing the type of the flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_init, flash_read,
flash_readsector, flash sector2xwindow, flash writesector

Dynamic C Functions rabbit.com

139

http://www.rabbit.com

flash_1nit

int flash_init(FlashDescriptor * fd, int mb3cr);

DESCRIPTION

Initializes an internal data structure of type FlashDescriptor with information about the
flash memory chip. The Memory Interface Unit bank register (MB3CR) will be assigned the
value of mb3cr whenever a function accesses the flash memory referenced by ¥d. See the Rab-
bit 2000 Users Manual for the correct chip select and wait state settings.

Note: Improper use of this function can cause your program to be overwritten or operate
incorrectly. This and the other flash memory access functions should not be used on the
same flash memory that your program resides on, nor should they be used on the same
region of a second flash memory where a file system resides.

Use WriteFlash() to write to the primary flash memory.

PARAMETERS
fd This is a pointer to an internal data structure that holds information about
a flash memory chip.
mb3cr This is the value to set MB3CR to whenever the flash memory is accessed.

Oxc2 (i.e., CS2, /OEOQ, /WEOQ, 0 WS) is a typical setting for the second flash
memory on the TCP/IP Dev Kit, the Intellicom, the Advanced Ethernet
Core, and the RabbitLink.

RETURN VALUE

0O: Success.
1: Invalid flash memory type.
-1: Attempt made to initialize primary flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

Tlash_erasechip, flash_erasesector, flash_gettype, flash_read,
flash_readsector, flash_sector2xwindow, flash_writesector

140 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash_read

int flash_read(FlashDescriptor * fd, word sector, word offset,
unsigned long buffer, word length);

DESCRIPTION
Reads data from the flash memory and stores it in buffer.

Note: d must have already been initialized with Flash_init before calling this func-
tion. See the Flash_ init description for further restrictions.

PARAMETERS

Td The FlashDescriptor of the flash memory to read from.

sector The sector of the flash memory to read from.

offset The displacement, in bytes, from the beginning of the sector to start read-
ing at.

buffer The physical address of the destination buffer. TIP: A logical address can
be changed to a physical with the function paddr.

length The number of bytes to read.

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype, flash_init,
flash_readsector, flash_sector2xwindow, flash_writesector,
paddr

Dynamic C Functions rabbit.com 141

http://www.rabbit.com

flash_readsector

int flash_readsector(FlashDescriptor * fd, word sector, unsigned
long buffer);

DESCRIPTION
Reads the contents of an entire sector of flash memory into a buffer.

Note: d must have already been initialized with Flash_init before calling this func-
tion. See Flash_init description for further restrictions.

PARAMETERS
Td The FlashDescriptor of the flash memory to read from.
sector The source sector to read.
buffer The physical address of the destination buffer. TIP: A logical address can

be changed to a physical with the function paddr ().

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype, flash_init,
flash_read, flash_sector2xwindow, flash_writesector

142 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash_sector2xwindow

void * flash_sector2xwindow(FlashDescriptor * fd, word sector);

DESCRIPTION

This function sets the MB3CR and XPC value so the requested sector falls within the XPC win-
dow. The MB3CR is the Memory Interface Unit bank register. XPC is one of four Memory
Management Unit registers. See flash_init description for restrictions.

PARAMETERS
fd The FlashDescriptor of the flash memory.
sector The sector to set the XPC window to.

RETURN VALUE
The logical offset of the sector.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype, flash_init,
flash_read, flash_readsector, flash_writesector

Dynamic C Functions rabbit.com

143

http://www.rabbit.com

flash_writesector

int flash_writesector(FlashDescriptor * fd, word sector, unsigned
long buffer);

DESCRIPTION
Writes the contents of buffer to sector on the flash memory referenced by fd.

Note: d must have already been initialized with Flash_init before calling this func-
tion. See Flash_init description for further restrictions.

PARAMETERS
Td The FlashDescriptor of the flash memory to write to.
sector The destination sector.
buffer The physical address of the source. TIP: A logical address can be changed

to a physical address with the function paddr ().

RETURN VALUE
0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype, flash_init,
flash _read, flash readsector, flash sector2xwindow

144 rabbit.com Dynamic C Functions

http://www.rabbit.com

floor

float floor(float x);
DESCRIPTION
Computes the largest integer less than or equal to the given number.

PARAMETERS

X Value to round down.

RETURN VALUE
Rounded down value.

LIBRARY
MATH.LIB

SEE ALSO
ceil, fmod

fmod

float fmod(float x, float y);

DESCRIPTION
Calculates modulo math.

PARAMETERS
X Dividend
Yy Divisor

RETURN VALUE

Returns the remainder of x/y. The remaining part of x after all multiples of y have been re-
moved. For example, if x is 22.7 and y is 10.3, the integral division result is 2. Then the remain-
deris: 22.7-2x10.3=2.1.

LIBRARY
MATH.LIB

SEE ALSO
ceil, floor

Dynamic C Functions rabbit.com 145

http://www.rabbit.com

fopen_rd (FS1)

int fopen_rd(File * f, FileNumber fnum);

DESCRIPTION
Opens a file for reading.

PARAMETERS
T A pointer to the file to read.
fnum A number in the range 1 to 127 inclusive that identifies the file in the flash

file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

146 rabbit.com Dynamic C Functions

http://www.rabbit.com

fopen_rd (FS2)

int fopen_rd(File * f, FileNumber name);

DESCRIPTION
Open file for reading only. See fopen_wr () for a more detailed description.

PARAMETERS
T Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.1ib

SEE ALSO
fclose, fopen wr (FS2)

Dynamic C Functions rabbit.com 147

http://www.rabbit.com

fopen_wr (FS1)

int fopen_wr(File * f, FileNumber fnum);

DESCRIPTION
Opens a file for writing.

PARAMETERS
T A pointer to the file to write.
fnum A number in the range 1 to 127 inclusive that identifies the file in the flash

file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

148 rabbit.com Dynamic C Functions

http://www.rabbit.com

fopen_wr (FS2)

int fopen_wr(File * T, FileNumber name);

DESCRIPTION

Open file for read or write. The given file number is composed of two parts: the low byte con-
tains the file number (1 to 255 inclusive) and the high byte, if not zero, contains the metadata
extent number. If the extent number is zero, it defaults to the correct metadata extent - this is for
the purpose of validating an expected extent number. Most applications should just pass the file
number with zero high byte.

A file may be opened multiple times, with a different file descriptor pointer for each call, which
allows the file to be read or written at more than one position at a time. A reference count for

the actual file is maintained, so that the file can only be deleted when all file descriptors refer-
ring to this file are closed.

Ffopen_wr () or fopen_rd() must be called before any other function from this library is

called that requires a Fi e pointer. The "current position™ is set to zero i.e. the start of the file.

When a file is created, it is automatically opened for writing thus a subsequent call to
fopen_wr () is redundant.

PARAMETERS

T Pointer to file descriptor (uninitialized).

name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY

fs2.1ib

SEE ALSO

fclose, fopen_rd (FS2)

Dynamic C Functions rabbit.com

149

http://www.rabbit.com

forceSoftReset

void forceSoftReset(void);
DESCRIPTION
Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY
SYS.LIB

fread (FS1)

int fread(File * f, char * buf, int len);

DESCRIPTION

Reads 1 en bytes from a file pointed to by ¥, starting at the current offset into the file, into buf-
fer. Data is read into buffer pointed to by buf.

PARAMETERS
T A pointer to the file to read from.
buf A pointer to the destination buffer.
len Number of bytes to copy.

RETURN VALUE
Number of bytes read.

LIBRARY
FILESYSTEM.LIB

150 rabbit.com Dynamic C Functions

http://www.rabbit.com

fread (FS2)

int fread(File * f, void * buf, int len);

DESCRIPTION

Read data from the “current position” of the given file. When the file is opened, the current po-
sition is 0, meaning the start of the file. Subsequent reads or writes advance the position by the
number of bytes read or written. fseek () can also be used to position the read point.

If the application permits, it is much more efficient to read multiple data bytes rather than read-
ing one-by-one.

PARAMETERS
L Pointer to file descriptor (initialized by Fopen_rd(), fopen_wr () or
fcreate()).
buf Data buffer located in root data memory or stack. This must be dimen-
sioned with at least len bytes.
len Length of data to read (0 to 32767 inclusive).

RETURN VALUE
len: Success.

<len: Partial success. Returns amount successfully read. errno gives further details (prob-
ably 0 meaning that end-of-file was encountered).

O: Failure, or 1en was zero.

LIBRARY
FS2_LIB

ERRNO VALUES

EBADFD - File descriptor not opened.

EINVAL - Ien less than zero.

0 - Success, but Ien was zero or EOF was reached prior to reading Ien bytes.
EI0 - 1/O error.

SEE ALSO
fseek (FS2), fwrite (FS2)

Dynamic C Functions rabbit.com 151

http://www.rabbit.com

frexp

float frexp(float x, int * n);

DESCRIPTION
Splits x into a fraction and exponent, f * (2").

PARAMETERS
X Number to split
n An integer

RETURN VALUE

The function returns the exponent in the integer *n and the fraction between 0.5, inclusive and

1.0.

LIBRARY
MATH.LIB

SEE ALSO
exp, ldexp

152 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fs_format (FS1)

int fs_format(long reserveblocks, int num_blocks, unsigned long
wearlevel);

DESCRIPTION
Initializes the internal data structures and file system. All blocks in the file system are erased.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH is defined
this value should be 0 or a multiple of the block size. When FS_RAM
is defined this parameter is ignored.

num_blocks The number of blocks to allocate for the file system. With a default
block size of 4096 bytes and a 256K flash memory, this value might be
64.

wearlevel This value should be 1 on a new flash memory, and some higher value

on an unformatted used flash memory. If you are reformatting a flash
memory you can set wear level to 0 to keep the old wear leveling.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

EXAMPLE
This program can be found in samples/filesystem/format.c.

#define FS_FLASH
#use "filesystem.lib"
#define RESERVE 0
#define BLOCKS 64
#define WEAR 1

main() {
iT(fs_format(RESERVE,BLOCKS,WEAR)) {

printf("'error formatting flash\n");
} else {
printf(""flash successfully formatted\n™);

Dynamic C Functions rabbit.com 153

http://www.rabbit.com

fs_format (FS2)

int fs_format(long reserveblocks, int num_blocks, unsigned wearlevel

)

DESCRIPTION

Format all extents of the file system. This must be called after calling fs_init(). Only ex-
tents that are not defined as reserved are formatted. All files are deleted.

PARAMETERS
reserveblocks Must be zero. Retained for backward compatibility.
num_blocks Ignored (backward compatibility).

wear level Initial wearlevel value. This should be 1 if you have a new flash, and
some larger number if the flash is used. If you are reformatting a flash,
you can use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - the reserveblocks parameter was non-zero.

EBUSY - one or more files were open.

E10 - I/O error during format. If this occurs, retry the format operation If it fails again, there
is probably a hardware error.

SEE ALSO
fs_init (FS2), Ix_format

154 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs_init (FS1)

int fs_init(long reserveblocks, int num_blocks);

DESCRIPTION

Initialize the internal data structures for an existing file system. Blocks that are used by a file
are preserved and checked for data integrity.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH is defined
this value should be 0 or a multiple of the block size. When FS_RAM is de-
fined this parameter is ignored.

num_blocks The number of blocks that the file system contains. By default the block
size is 4096 bytes.

RETURN VALUE

0:Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

155

http://www.rabbit.com

fs_init (FS2)

int fs_init(long reserveblocks, int num_blocks);

DESCRIPTION

Initialize the filesystem. The static structure _Fs contains information that defines the number
and parameters associated with each extent or “partition.” This function must be called before
any of the other functions in this library, except for fs_setup(), fs_get_*_Ix() and
Ts_get_Ix_size().

Pre-main initialization will create up to 3 devices:

» The second flash device (if available on the board)

* Battery-backed SRAM (if FS2_RAM_RESERVE defined)

* The first (program) flash (if both XMEM_RESERVE_SIZE and
FS2_USE_PROGRAM_FLASH defined)

The LX numbers of the default devices can be obtained using the fs_get flash_Ix(),
Tfs_get _ram_Ix() and fs_get_other_Ix() calls. If none of these devices can be set
up successfully, ¥s_init() will return ENOSPC when called.

This function performs complete consistency checks and, if necessary, fixups for each LX. It
may take up to several seconds to run. It should only be called once at application initialization
time.

Note: When using uC/OS-Il, fs_init() must be called before OSInit().
PARAMETERS
reserveblocks Must be zero. Retained for backward compatibility.

num_blocks Ignored (backward compatibility).

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

EINVAL - the reserveblocks parameter was non-zero.

EI0 - 1/O error. This indicates a hardware problem.

ENOMEM - Insufficient memory for required buffers.

ENOSPC - No valid extents obtained e.g. there is no recognized flash or RAM memory device
available.

LIBRARY
fs2_1ib

SEE ALSO
fs_setup (FS2), fs_get flash_Ix (FS2)

156 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs_reserve _blocks (FS1)

int fs_reserve_blocks(int blocks);

DESCRIPTION

Sets up a number of blocks that are guaranteed to be available for privileged files. A privileged
file has an identifying number in the range 128 through 143. This function is not needed in most
cases. If it is used, it should be called immediately after fs_init or fs_format.

PARAMETERS

blocks Number of blocks to reserve.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

fsck (FS1)
int fsck(int flash);
DESCRIPTION
Check the filesystem for errors
PARAMETERS
flash A bitmask indicating which checks to NOT perform. The following checks

are available:

FSCK_HEADERS - Block headers.
FSCK_CHECKSUMS - Data checksums.
FSCK_VERSION - Block versions, from a failed write.

RETURN VALUE

0: Success.
10: Failure, this is a bitmask indicating which checks failed.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 157

http://www.rabbit.com

fseek (FS1)

int fseek(File * f, long to, char whence);

DESCRIPTION
Places the read pointer at a desired location in the file.

PARAMETERS
T A pointer to the file to seek into.
to The number of bytes to move the read pointer. This can be a positive or
negative number.
whence The location in the file to offset from. This is one of the following con-
stants.
SEEK_SET - Seek from the beginning of the file.
SEEK _CUR - Seek from the current read position in the file.
SEEK_END - Seek from the end of the file.
EXAMPLE

To seek to 10 bytes from the end of the file T, use
fseek(f, -10, SEEK _END);

To rewind the file T by 5 bytes, use
fseek(Ff, -5, SEEK _CUR);

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

158 rabbit.com Dynamic C Functions

http://www.rabbit.com

fseek (FS2)

int fseek(File * f, long where, char whence);

DESCRIPTION

Set the current read/write position of the file. Bytes in a file are sequentially numbered starting
at zero. If the current position is zero, then the first byte of the file will be read or written. If the
position equals the file length, then no data can be read, but any write will append data to the
file.

Tseek () allows the position to be set relative to the start or end of the file, or relative to its
current position.

In the special case of SEEK_RAW, an unspecified number of bytes beyond the known end-of-

file may be readable. The actual amount depends on the amount of space left in the last internal
block of the file. This mode only applies to reading, and is provided for the purpose of data re-
covery in the case that the application knows more about the file structure than the filesystem.

PARAMETERS
T Pointer to file descriptor (initialized by fopen_rd (), fopen_wr () or
fcreate()).
where New position, or offset.
whence One of the following values:

SEEK_SET: 'where' (non-negative only) is relative to start of file.
SEEK_CUR: 'where' (positive or negative) is relative to the current posi-
tion.

SEEK_END: 'where' (non-positive only) is relative to the end of the file.
SEEK_RAW: Similar to SEEK_END, except the file descriptor is set in a
special mode which allows reading beyond the end of the file.

RETURN VALUE
0O: Success.
10: The computed position was outside of the current file contents, and has been adjusted to the
nearest valid position.
ERRNO VALUES
None.

LIBRARY
FS2_LIB

SEE ALSO
ftell (FS2), fread (FS2), fwrite (FS2)

Dynamic C Functions rabbit.com 159

http://www.rabbit.com

fs _get flash_Ix (FS2)

FSLXnum fs_get flash_Ix(void);

DESCRIPTION

Returns the logical extent number of the preferred flash device. This is the second flash if one
is available on your hardware, otherwise it is the reserved area in your program flash. In order
for the program flash to be available for use by the file system, you must define two constants:
the first constant is XMEM_RESERVE_S1ZE near the top of BIOS\RABBITBI10S.C. This
value is set to the amount of program flash to reserve (in bytes). This is required by the BIOS.
The second constant is set in your code before #use "fs2_1ib".
FS2_USE_PROGRAM_FLASH must be defined to the number of KB (1024 bytes) that will ac-
tually be used by the file system. If this is set to a larger value than the actual amount of reserved
space, then only the actual amount will be used.

The sample program SAMPLES\FILESYSTEM\FS2INFO . C demonstrates use of this func-
tion.

This function may be called before calling fs_init().

RETURN VALUE

O: There is no flash file system available.
10: Logical extent number of the preferred flash.

LIBRARY
FS2.1ib

SEE ALSO
fs_get_ram_Ix (FS2), fs_get_other_Ix (FS2)

160 rabbit.com Dynamic C Functions

http://www.rabbit.com

s _get Ix (FS2)

FSLXnum fs_get Ix(int meta);

DESCRIPTION

Return the current extent (LX) number for file creation. Each file has two parts: the main bulk
of data, and the metadata which is a relatively small, fixed, amount of data used to journal
changes to the file. Both data and metadata can reside on the same extent, or they may be sep-
arated.

PARAMETERS

meta 1: return logical extent number for metadata.
O: return logical extent number for data.

RETURN VALUE
Logical extent number.

LIBRARY
FS2.1ib

SEE ALSO
fcreate (FS2), fs_set Ix (FS2)

Dynamic C Functions rabbit.com

161

http://www.rabbit.com

fs _get Ix _size (FS2)

long fs_get_Ix_size(FSLXnum Ixn, int all, word Is_shift);

DESCRIPTION

Returns the size of the specified logical extent, in bytes. This information is useful when initial-
ly partitioning an LX, or when estimating the capacity of an LX for user data. al I is a flag
which indicates whether to return the total data capacity (as if all current files were deleted) or
whether to return just the available data capacity. The return value accounts for the packing ef-
ficiency which will be less than 100% because of the bookkeeping overhead. It does not account
for the free space required when any updates are performed; however this free space may be
shared by all files on the LX. It also does not account for the space required for file metadata.
You can account for this by adding one logical sector for each file to be created on this LX. You
can also specify that the metadata be stored on a different LX by use of fs_set_1x().

This function may be called either before or after fs_init(). If called before, then the
Is_shi Tt parameter must be set to the value to be used in fs_setup(), since the LS size
is not known at this point. Is_shift can also be passed as zero, in which case the default
size will be assumed. al I must be non-zero if called before fs__init(), since the number of
files in use is not yet known.

PARAMETERS
Ixn Logical extent number to query.
all Boolean: 0 for current free capacity only, 1 for total.
Must use 1 if calling before fs_init().
Is_shift Logical sector shift i.e. log base 2 of LS size (6 to 13); may be zero to use

default.

RETURN VALUE

0: The specified LX does not exist.
10: Capacity of the LX in bytes.

LIBRARY
FS2_1ib

162 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs_get other_Ix (FS2)

FSLXnum fs_get other_Ix(void);

DESCRIPTION

Returns the logical extent number of the non-preferred flash device. If it exists, this is usually
the program flash. See the description under fs_get_flash_Ix () for details about setting
up the program flash for use by the filesystem.

The sample program Samples\FILESYSTEM\FS2INFO . C demonstrates use of this func-
tion.

This function may be called before calling fs_init().

RETURN VALUE

O: There is no other flash filesystem available.
10: Logical extent number of the non-preferred flash.

LIBRARY
FS2_LIB

SEE ALSO
fs_get_ram_Ix (FS2), fs_get_flash_Ix (FS2)

Dynamic C Functions rabbit.com

163

http://www.rabbit.com

fs_get _ram Ix (FS2)

FSLXnum fs_get ram_Ix(void);

DESCRIPTION
Return the logical extent number of the RAM file system device. This is only available if you
have defined FS2_RAM_RESERVE to a non-zero number of bytes in the BIOS.

A RAM filesystem is only really useful if you have battery-backed SRAM on the board. You
can still use a RAM file system on volatile RAM, but of course files will not persist over power
cycles and you should explicitly format the RAM filesystem at power-up.

The sample program Samples\FILESYSTEM\FS2INFO.C demonstrates use of this func-
tion.

This function may be called before calling fs_init().

RETURN VALUE

0: There is no RAM filesystem available.
10: Logical extent number of the RAM device.

LIBRARY
FS2_LIB

SEE ALSO
fs_get flash _Ix (FS2), fs _get other_Ix (FS2)

164 rabbit.com Dynamic C Functions

http://www.rabbit.com

s _set Ix (FS2)

int fs_set Ix(FSLXnum meta, FSLXnum data);

DESCRIPTION

Sets the default logical extent (LX) numbers for file creation. Each file has two parts: the main
bulk of data, and the metadata which is a relatively small, fixed amount of data used to journal
changes to the file. Both data and metadata can reside on the same extent, or they may be sep-
arated. The metadata, no matter where it is located, consumes one sector.

The file creation functions allow the metadata extent to be explicitly specified (in the high byte
of the file number), however it is usually easier to call fs_set_Ix() to set appropriate de-
faults. Calling Fs_set_Ix() is the only way to specify the data extent.

If fs_set Ix() isnever called, both data and metadata will default to the first non-reserved
extent number.

PARAMETERS
meta Extent number for metadata.
data Extent number for data.

RETURN VALUE

0: Success.
10: Error, e.g. non-existent LX number.

ERRNO VALUES
ENODEYV - no such extent number, or extent is reserved.

LIBRARY
FS2_LIB

SEE ALSO
fcreate (FS2)

Dynamic C Functions rabbit.com

165

http://www.rabbit.com

fs_setup (FS2)

FSLXnum fs_setup(FSLXnum Ixn, word Is_shift, int reserve_it, void *
rfu, Int partition_it, word part, word part _Is shift, int
part_reserve, void * part_rfu);

DESCRIPTION

To modify or add to the default extents, this function must be called before calling
fs_init(). If called after Fs_init(), the filesystem will be corrupted.

Ts_setup() runsin one of two basic modes, determined by the partition_it parame-
ter. If partition_itisnon-zero, then the specified extent (Ixn, which must exist), is split
into two extents according to the given proportions. If partition_it is zero, then the spec-
ified extent must not exist; it is created. This use is beyond the scope of this note, since it in-
volves filesystem internals. The paritioning usage is described here.

partition_itmaybeFS MODIFY_EXTENT inwhich case the base extent, I xn, is mod-
ified to use the specified Is_shift and reserve_ i1t parameters (the other parameters are
ignored).

partition_itmaybesetto FS _PARTITION_FRACTION (other values reserved). This
causes extent number Ixn to be split. The first half is still referred to as extent Ixn, and the
other half is assigned a new extent number, which is returned.

The base extent number may itself have been previously partitioned, or it should be 1 for the
2nd flash device, or possibly 2 for the NVRAM device.

PARAMETERS
Ixn Base extent number to partition or modify.
Is_shift New logical sector size to assign to base partition, or zero to not alter it.
This is expressed as the log base 2 of the desired size, and must be a num-
ber between 6 and 13 inclusive.
reserve_it TRUE if base partition is to be marked reserved.
rfu A pointer reserved for future use. Pass as null.

partition_it Mustbesetto FS PARTITION_FRACTION or
FS_MODIFY_EXTENT. The following parameters are ignored if this
parameter is not FS_PARTITION_FRACTION.

166 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs_setup (FS2) (cont’d)

The fraction of the existing base extent to assign to the new extent. This
number is expressed as a fixed-point binary number with the binary
point to the left of the MSB e.g. 0x3000 assigns 3/16 of the base extent
to the new partition, updating the base extent to 13/16 of its original
size. The nearest whole number of physical sectors is used for each ex-

tent.

part

part_Is_shift Logical sector size to assign to the new extent, or zero to use the same
LS size as the base extent. Expressed in same units as parameter 2.

part_reserve TRUE if the new extent is to be reserved.

part_rfu A pointer reserved for future use. Pass as null.

RETURN VALUE

O: Failure, extent could not be partitioned.
10: Success, number of the new extent, or same as Ixd for existing extent modification.

ERRNO VALUES
ENOSPC - one or other half would contain an unusably small number of logical sectors, or the
extent table is full. In the latter case, #define FS_MAX_LX to a larger value.

EINVAL - partition_it settoan invalid value, or other parameter invalid.
ENODEYV - specified base extent number not defined.

LIBRARY
FS2_LIB

SEE ALSO
fs_init (FS2)

Dynamic C Functions rabbit.com

167

http://www.rabbit.com

fs_sync (FS2)

int fs_sync(void);

DESCRIPTION

Flush any buffers retained in RAM to the underlying hardware device. The file system does not
currently perform any buffering, however future revisions of this library may introduce buffer-
ing to improve performance. This function is similar to FFlush (), except that the entire file
system is synchronized instead of the data for just one file. Use fs_sync() in preference to
TFlush() if there is only one extent in the filesystem.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES
EI10 - 1/O error.

LIBRARY
FS2_LIB

SEE ALSO
fflush (FS2)

168 rabbit.com Dynamic C Functions

http://www.rabbit.com

ftell (FS1)

long ftell(File * T);

DESCRIPTION
Gets the offset from the beginning of a file that the read pointer is currently at.

TIP: Ftel 1 () can be used with Fseek () to find the length of a file.

fseek(f, 0, SEEK _END); // seek to the end of the file
FileLength = ftell(F); // find the length of the file

PARAMETERS
L A pointer to the file to query.

RETURN VALUE

The offset in bytes of the read pointer from the beginning of the file: Success.
-1: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 169

http://www.rabbit.com

ftell (FS2)

long ftell(File * T);

DESCRIPTION

Return the current read/write position of the file. Bytes in a file are sequentially numbered start-
ing at zero. If the current position is zero, then the first byte of the file will be read or written.
If the position equals the file length, then no data can be read, but any write will append data to
the file.

Note that no checking is done to see if the file descriptor s valid. If the File is not actually open,
the return value will be random.
PARAMETERS
T Pointer to file descriptor (initialized by fopen_rd(), fopen_wr () or
fcreate()).

RETURN VALUE
Current read/write position (0 to length-of-file).

ERRNO VALUES
None

LIBRARY
fs2.1ib

SEE ALSO
fseek (FS2)

170 rabbit.com Dynamic C Functions

http://www.rabbit.com

fshift

int fshift(File * ¥, int len, void * buf);

DESCRIPTION

Delete data from the start of a file opened for writing. Optionally, the data that was removed can
be read into a buffer. The “current position” of the file descriptor is adjusted to take account of
the changed file offsets. If the current position is pointing into the data that is removed, then it
is set to zero, i.e., the start of data immediately after the deleted section.

The specified file must not be opened with other file descriptors, otherwise an EBUSY error is
returned. The exceptiontothisisif FS2_SHIFT_DOESNT_UPDATE_FPOS is defined before
#use Fs2._1ib. If defined, multiple file descriptors can be opened, but their current position
will not be updated if Fshift () is used. In this case, the application should explicitly use
Tseek () on all file descriptors open on this file (including the one used to perform the
Tshitt()). If this is not done, then their current position is effectively advanced by the num-
ber of characters shifted out by the fshift().

The purpose of this function is to make it easy to implement files which worm their way through
the filesystem: adding at the head and removing at the tail, such that the total file size remains
approximately constant.

Surprisingly, it is possible for an out-of-space error to occur, since the addition of the journaling
(meta-data) entry for the shift operation may cause an error before deleted blocks (if any) are
made available.

PARAMETERS
L Pointer to file descriptor (initialized by Fopen_wr () or fcreate()).
len Length of data to remove (0 to 32767 inclusive).
*buf Data buffer located in root data memory or stack. This must be dimen-

sioned with at least 1en bytes. This parameter may also be null if the de-
leted data is not needed.

Dynamic C Functions rabbit.com 171

http://www.rabbit.com

fshift (cont’d)

RETURN VALUE
len: Success.
<len: Partial success - returns amount successfully deleted. errno gives further details (prob-

ably ENOSPC)
O: Error or Ien was zero.

ERRNO VALUES
EBADFD - File descriptor not opened, or is read-only.
EINVAL - Ien less than zero.
O - Success, but Ien was zero.
EI0 - 1/O error.
ENOSPC - extent out of space.
EBUSY - file opened more than once. This is only possible if
FS2_ SHIFT_DOESNT_UPDATE_FPOS is not defined, which is the default case.

LIBRARY
FS2_LIB

SEE ALSO
fread (FS2), fwrite (FS2)

172 rabbit.com Dynamic C Functions

http://www.rabbit.com

fwrite (FS1)

int fwrite(File * ¥, char * buf, int len);

DESCRIPTION

Appends Ien bytes from the source buffer to the end of the file.

PARAMETERS
T A pointer to the file to write to.
buf A pointer to the source buffer.
len The number of bytes to write.

RETURN VALUE

The number of bytes written: Success.
O: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

173

http://www.rabbit.com

fwrite (FS2)

int fwrite(File * ¥, void * buf, int len);

DESCRIPTION

Write data to file opened for writing. The data is written starting at the current position. This is
zero (start of file) when it is opened or created, but may be changed by fread (), fwrite(),
Tshitt() or fseek () functions. After writing the data, the current position is advanced to
the position just after the last byte written. Thus, sequential calls to fwrite () will add or ap-
pend data contiguously.

Unlike the previous file system (FILESYSTEM. L1B), this library allows files to be overwrit-
ten not just appended. Internally, overwrite and append are different operations with differing
performance, depending on the underlying hardware. Generally, appending is more efficient es-
pecially with byte-writable flash memory. If the application allows, it is preferable to use ap-
pend/shift rather than overwrite. In order to ensure that data is appended, use fseek(f, O,
SEEK_END) before calling fwrite().

The same current-position pointer is used for both read and write. If interspersing read and
write, then Fseek () should be used to ensure the correct position for each operation. Alterna-
tively, the same file can be opened twice, with one descriptor used for read and the other for
write. This precludes use of fshift(), since it does not tolerate shared files.

PARAMETERS
L Pointer to file descriptor (initialized by fopen_wr () or fcreate()).
buf Data buffer located in root data memory or stack.
len Length of data (0 to 32767 inclusive).

RETURN VALUE

len: Success.
<len: Partial success. Returns amount successfully written. errno gives details.
O: Failure, or Ien was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or is read-only.
EINVAL - Ien less than zero.

O - Success, but Ien was zero.

EI0 - 1/O error.

ENOSPC - extent out of space.

LIBRARY
fs2_LIB

SEE ALSO
fread (FS2)

174 rabbit.com Dynamic C Functions

http://www.rabbit.com

ftoa

int ftoa(float f, char * buf);

DESCRIPTION
Converts a float number to a character string.
The character string only displays the mantissa up to 9 digits, no decimal points, and a minus

sign if F is negative. The function returns the exponent (of 10) that should be used to compen-
sate for the string: Ftoa(1.0,buf) yields buf=""1200000000"" and returns -8.

PARAMETERS
f Float number to convert.
buf Converted string. The string is no longer than 10 characters long.

RETURN VALUE
The exponent of the number.

LIBRARY
STDIO.LIB

SEE ALSO
utoa, itoa

getchar

char getchar(void);

DESCRIPTION

Busy waits for a character to be typed from the stdio window in Dynamic C. The user should make
sure only one process calls this function at a time.

RETURN VALUE
A character typed in the Stdio window in Dynamic C.

LIBRARY
STDIO.LIB

SEE ALSO
gets, putchar

Dynamic C Functions rabbit.com 175

http://www.rabbit.com

get_cpu_frequency

unsigned long get_cpu_Tfrequency();

DESCRIPTION

Returns the clock speed of the CPU as calculated by the BIOS, adjusted for the clock doubler
if it is enabled. Due to the limited precision of the clock speed calculation, the calculated and
actual clock speeds may differ slightly.

RETURN VALUE
The clock speed of the CPU in Hz.

LIBRARY
sys.lib

getcrc

int getcrc(char * dataarray, char count, int accum);

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (maximum
255) of data in buffer. Calls to getcrc can be “concatenated” using accum to compute the
CRC for a large buffer.

PARAMETERS
dataarray Data buffer
count Number of bytes. Maximum is 255.
accum Base CRC for the data array.

RETURN VALUE
CRC value.

LIBRARY
MATH.LIB

176 rabbit.com Dynamic C Functions

http://www.rabbit.com

getdivider19200

char getdivider19200(void);

DESCRIPTION
This function returns a value that is used in baud rate calculations.
The correct value is returned regardless of the compile mode. In separate 1&D space mode, the
divider value is stored as a define byte in code space, so directly accessing the variable will re-
sult in an incorrect load (from constant data space). This function uses the Idp instruction,

which circumvents the separate 1&D default loading scheme so that the correct value is re-
turned.

RETURN VALUE
The value used in baud rate calculation.

LIBRARY
SYS.LIB

gets

char * gets(char * s);

DESCRIPTION

Waits for a string terminated by <CR> at the stdio window. The string returned is null terminat-
ed without the return. The user should make sure only one process calls this function at a time.

PARAMETERS

s The input string is put to the location pointed to by the argument s. The
caller is responsible to make sure the location pointed to by s is big enough
for the string.

RETURN VALUE
Same pointer passed in, but string is changed to be null terminated.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

Dynamic C Functions rabbit.com 177

http://www.rabbit.com

__GetSysMacrolndex

int _GetSysMacrolndex(int n, char * buf, uint32 * value);

DESCRIPTION

Skips to the nth macro entry and retrieves the macro name (as defined by the compiler), and the
value of the macro as defined in the system macro table. The system macro table contains board
specific configuration parameters that are defined by the compiler and can be retrieved at run-
time through this interface. The flash driver must be initialized and the System ID block must
be read before this function will return accurate results.

This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
n The index in the system macro table.
buf Character array to contain and return macro name (copied from system
macro table). MUST BE AT LEAST SYS_MACRO_LENGTH bytes or
function will overflow buffer and can crash system!
value Pointer to macro value to return to caller.

RETURN VALUE

O: if successful
-1: invalid address or range (use to find end of table)
-2: 1D block or macro table invalid

LIBRARY
IDBLOCK.LIB

SEE ALSO
_GetSysMacroValue

178 rabbit.com Dynamic C Functions

http://www.rabbit.com

__GetSysMacroValue

int _GetSysMacroValue(char * name, long * value);

DESCRIPTION

Finds the system table macro named by the first parameter (as defined by the compiler) and re-
trieves the value of the macro as defined in the system macro table. The system macro table con-
tains board specific configuration parameters that are define by the compiler and can be
retrieved at runtime through this interface. The flash driver must be initialized and the System
ID block must be read before this function will return accurate results.

See writeUserBlockArray for more details.

This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
name Name of System ID block macro (acts as lookup key).
value Pointer to macro value to return to caller.

RETURN VALUE

O: if successful
-1: Macro name not found
-2: No valid ID block found (block version 3 or later)
-3: First parameter is a bad macro name

LIBRARY
IDBLOCK.LIB

SEE ALSO
writeUserBlockArray

Dynamic C Functions rabbit.com 179

http://www.rabbit.com

GetVectExtern2000

unsigned GetVectExtern2000(void);

DESCRIPTION

Reads the address of external interrupt table entry. This function really just returns what is present
in the table. The return value is meaningless if the address of the external interrupt has not been
written.

This function should be used for Rabbit 2000 processors that are marked 1Q2T in the 3rd line
of text across the face of the chip. It will work for other versions of the Rabbit 2000 but should
be deprecated in favor of GetVectExtern3000() which allows the use of two external
interrupts. (Please see document TN301, “Rabbit 2000 Microprocessor Interrupt Issue,” on the
Rabbit Semiconductor website for more information.)

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO

GetVectlintern, SetVectExtern2000, SetVectlntern,
GetVectExtern3000

180 rabbit.com Dynamic C Functions

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbit.com

GetVectExtern3000

unsigned GetVectExtern3000(int interruptNum);

DESCRIPTION

Reads the address of an external interrupt table entry. This function may be used with all Rabbit
3000 processors and all Rabbit 2000 processors with the exception of the ones marked 1Q2T in
the 3rd line of text across the face of the chip. For those, use the function
GetVectExtern2000() instead.

GetVectExtern3000() returns the value at address:
(external vector table base) + (interruptNum * 8) + 1

PARAMETER

interruptNum Interrupt number. Should be 0 or 1.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO

SetVectExtern3000, SetVectlntern, GetVectlntern,
GetVectExtern2000

Dynamic C Functions rabbit.com 181

http://www.rabbit.com

GetVectlIntern

unsigned GetVectintern(int vectNum);

DESCRIPTION
Reads the address of the internal interrupt table entry and returns whatever value is at the address:

(internal vector table base) + (vectNum*16) + 1
PARAMETER

vectNum Interrupt number; should be 0-15.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectExtern2000, SetVectlntern

gps_get _position

int gps_get position(GPSPositon * newpos, char * sentence);

DESCRIPTION

Parses a sentence to extract position data. This function is able to parse any of the following
GPS sentence formats: GGA, GLL or RMC.

PARAMETERS
newpos A GPSPosition structure to fill.
sentence A string containing a line of GPS data in NMEA-0183 format.

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
gps-lib

182 rabbit.com Dynamic C Functions

http://www.rabbit.com

gps_get_utc

int gps_get_utc(struct tm * newtime, char * sentence);

DESCRIPTION
Parses an RMC sentence to extract time data.

PARAMETERS
newtime tm structure to fill with new UTC time.
sentence A string containing a line of GPS data in NMEA-0183 format (RMC sen-

tence).

RETURN VALUE

0: Success.
-1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
GPS.LIB

gps_ground_distance

float gps_ground_distance(GPSPosition * a, GPSPosition * b);

DESCRIPTION
Calculates ground distance (in km) between two geographical points. (Uses spherical earth
model.)
PARAMETERS
a First point.
b Second point.

RETURN VALUE
Distance in kilometers.

LIBRARY
GPS.LIB

Dynamic C Functions rabbit.com 183

http://www.rabbit.com

hanncplx

void hanncplIx(int * x, int N, int * blockexp);

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered spec-
trum replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

N must be a power of 2 and between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

X Pointer to N-element array of complex fractions.

N Number of complex elements in array X.

blockexp Pointer to integer block exponent.

LIBRARY
FFT_LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

184 rabbit.com Dynamic C Functions

http://www.rabbit.com

hannreal

void hannreal(int * x, int N, int * blockexp);

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann kernel.
The function produces the same results as would be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

The imaginary part of the dc term (stored in X[[1]) is considered to be the real part of the fmax
term. The dc and fmax spectral components take part in the convolution along with the other
spectral components. The real part of fmax component affects the real part of the X[N-1] com-
ponent (and vice versa), and should not arbitrarily be set to zero unless these components are
unimportant.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array X.
blockexp Pointer to integer block exponent.

RETURN VALUE
None. The filtered spectrum replaces the original spectrum.

LIBRARY
FFT_LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

Dynamic C Functions rabbit.com 185

http://www.rabbit.com

HDLCabortX

void HDLCabortX(void); /* Where X is E or F */

DESCRIPTION

Immediately stops any transmission. An HDLC abort code will be sent if the driver was in the
middle of sending a packet.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

LIBRARY
HDLC_PACKET.LIB

HDLCcloseX

void HDLCcloseX(void); /* Where X is E or F */

DESCRIPTION

Disables the HDLC port (E or F). If it was used, the TAT1R resource (timer Al cascade) is re-
leased. This function is non-reentrant.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

LIBRARY
HDLC_PACKET.LIB

SEE ALSO
TAT1R_SetValue

186 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCdropX

int HDLCdropX(void); /* Where X is E or F */

DESCRIPTION

Drops the next received packet, freeing up its buffer. This must be used if the packet has been
examined with HDLCpeekX () and is no longer needed. A call to HDLCreveiceX() is the
only other way to free up the buffer.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

RETURN VALUE

1: Packet dropped.
0: No received packets were available.

LIBRARY
HDLC_PACKET.LIB

HDLCerrorX

int HDLCerrorX(unsigned long * bufptr, int * lenptr);
/* Where X is E or F */

DESCRIPTION
This function returns a set of possible error flags as an integer. A received packet with errors is
automatically dropped.
Masks are used to check which errors have occurred. The masks are:

» HDLC_NOBUFFER - driver ran out of buffers for received packets.
HDLC_OVERRUN - a byte was overwritten and lost before the ISR could retreive it.
HDLC_OVERFLOW - a received packet was too long for the buffers.
HDLC_ABORTED - a received packet was aborted by the sender during tranmission.
HDLC_BADCRC - a packet with an incorrect CRC was received.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

RETURN VALUE
Error flags (see above).

LIBRARY
HDLC_PACKET.LIB

Dynamic C Functions rabbit.com 187

http://www.rabbit.com

HDLCextClockX

void HDLCextClockE(int ext_clock) /* Where X is E or F */

DESCRIPTION

Configures HDLC to be either internally (default) or externally clocked. This should be called
after HDLCopenX().

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETER
ext_clock 1 for externally clocked
0 for internally clocked
LIBRARY

HDLC_PACKET.LIB

188 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCopenX

int HDLCopenX(long baud, char encoding, unsigned long buffers, int
buffer_count, int buffer_size); /* Where X is E or F */

DESCRIPTION

Opens serial port E or F in HDLC mode. Sets up buffers to hold received packets. This function
is intended for use with the Rabbit 3000 and Rabbit 4000. Please see the chip manuals for more
details on HDLC and the bit encoding modes to use.

PARAMETERS

baud The baud rate for the serial port. Due to imitations in the baud generator,
non-standard baud rates will be approximated within 5% of the value re-
guested.

encoding The bit encoding mode to use. Macro labels for the available options are:

* HDLC_NRZ

» HDLC_NRZI

* HDLC_MANCHESTER

» HDLC_BIPHASE_SPACE
= HDLC_BIPHASE_MARK

buffers A pointer to the start of the extended memory block containing the receive
buffers. This block must be allocated beforehand by the user. The size of
the block should be:

(# of buffers) * ((size of buffer) + 4)
buffer_count The number of buffers in the block pointed to by buffer.

buffer_size The capacity of each buffer in the block pointed to by buffer.

RETURN VALUE

1: Actual baud rate is within 5% of the requested baud rate,
0: Otherwise.

LIBRARY
HDLC_PACKET.LIB

SEE ALSO
SetSerialTATxRValues, TAT1R_SetValue

Dynamic C Functions rabbit.com 189

http://www.rabbit.com

HDLCpeekX

int HDLCpeekX(unsigned long * bufptr, int * lenptr);
/* Where X is E or F */

DESCRIPTION

Reports the location and size of the next available received packet if one is available. This func-
tion can be used to efficiently inspect a received packet without actually copying it into a root
memory buffer. Once inspected, the buffer can be received normally (see
HDLCreceiveX()), or dropped (see HDLCdropX()).

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
bufptr Pointer to location in xmem of the received packet.
lenptr Pointer to the size of the received packet.

RETURN VALUE

1: The pointers bufptr and lenptr have been set for the received packet.
0: No received packets available.

LIBRARY
HDLC_PACKET.LIB

190 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCreceiveX

int HDLCreceiveX(char *rx_buffer, int length); /7* Where X is E or F */

DESCRIPTION

Copies areceived packet into rx_buffer if there is one. Packets are received in the order they
arrive, even if multiple packets are currently stored in buffers.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
rx_buffer Pointer to the buffer to copy a received packet into.
length Size of the buffer pointed to by rx_bufTfer.

RETURN VALUE

>0: Size of received packet.

-1: No packets are available to receive.

-2: The buffer is not large enough for the received packet. In this case, the packet remains in
the receive buffer)

LIBRARY
HDLC_PACKET.LIB

Dynamic C Functions rabbit.com 191

http://www.rabbit.com

HDLCsendX

int HDLCsendX(char * tx_buffer, int length); /7* Where X is E or F */

DESCRIPTION

Transmits a packet out serial port E or F in HDLC mode. The tx_buffer is read directly while
transmitting, therefore it cannot be altered until a subsequent call to HDLCsendingX() re-
turns false, indicating that the driver is done with it.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
tx_buffer A pointer to the packet to be sent. This buffer must not change while trans-
mitting (see above.)
length The size of the buffer (in bytes).

RETURN VALUE

1: Sending packet.
0: Cannot send, another packet is currently being transmitted.

LIBRARY
HDLC_PACKET.LIB

192 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCsendingX

int HDLCsendingX(void); /* Where X is E or F */

DESCRIPTION

Returns true if a packet is currently being transmitted. This function is intended for use with the
Rabbit 3000 and Rabbit 4000.

RETURN VALUE

1: Currently sending a packet.
O: Transmitter is idle.

LIBRARY
HDLC_PACKET.LIB

hexstrtobyte

int hexstrtobyte (char far *p);

DESCRIPTION
Converts two hex characters (0-9A-Fa-f) to a byte.

RETURN VALUE

The byte (0-255) represented by the two hex characters or -1 on error (invalid character, string
less than 2 bytes).

EXAMPLES

hexstrtobyte("FF") returns 255
hexstrtobyte(*'0") returns -1 (error because < 2 characters)
hexstrtobyte("ABCDEF") returns 0XAB (ignores additional chars)

Dynamic C Functions rabbit.com 193

http://www.rabbit.com

hitwd

void hitwd(void);

DESCRIPTION

Hits the watchdog timer, postponing a hardware reset for 2 seconds. Unless the watchdog timer
is disabled, a program must call this function periodically, or the controller will automatically

reset itself. If the virtual driver is enabled (which it is by default), it will call hitwd in the back-
ground. The virtual driver also makes additional “virtual” watchdog timers available.

LIBRARY
VDRIVER.LIB

htoa

char * htoa(int value, char * buf);

DESCRIPTION
Converts integer val ue to hexadecimal number and puts result into buf.

PARAMETERS
value 16-bit number to convert
buf Character string of converted number

RETURN VALUE
Pointer to end (null terminator) of string in but.

LIBRARY
STDIO.LIB

SEE ALSO
itoa, utoa, ltoa

194 rabbit.com Dynamic C Functions

http://www.rabbit.com

IntervalMs

int IntervalMs(long ms);

DESCRIPTION

Similar to De layMs but provides a periodic delay based on the time from the previous call.

Intended for use with wai tfor.

PARAMETERS
ms The number of milliseconds to wait.

RETURN VALUE

0O: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

IntervalSec

int IntervalSec(long sec);

DESCRIPTION

Similar to De layMs but provides a periodic delay based on the time from the previous call.

Intended for use with wai tfor.

PARAMETERS
sec The number of seconds to delay.

RETURN VALUE

0O: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

195

http://www.rabbit.com

IntervalTick

int IntervalTick(long tick);

DESCRIPTION

Provides a periodic delay based on the time from the previous call. Intended for use with
waitfor. Atick is 1/1024 seconds.

PARAMETERS
tick The number of ticks to delay

RETURN VALUE

0O: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

ipres

void ipres(void);

DESCRIPTION

Dynamic C expands this call inline. Restore previous interrupt priority by rotating the IP regis-
ter.

LIBRARY
UTIL.LIB

SEE ALSO
ipset

196 rabbit.com Dynamic C Functions

http://www.rabbit.com

ipset

void ipset(int priority);

DESCRIPTION

Dynamic C expands this call inline. Replaces current interrupt priority with another by rotating
the new priority into the IP register.

PARAMETERS
priority Interrupt priority range 0-3, lowest to highest priority.

LIBRARY
UTIL.LIB

SEE ALSO
ipres

isalnum

int isalnum(int c);

DESCRIPTION

Tests for an alphabetic or numeric character, (Ato Z, ato zand 0 to 9).
PARAMETERS

o Character to test.

RETURN VALUE

0O if not an alphabetic or numeric character.
10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isalpha, 1sdigit, ispunct

Dynamic C Functions rabbit.com 197

http://www.rabbit.com

i1salpha

int isalpha(int c);

DESCRIPTION

Tests for an alphabetic character, (A to Z, or a to z).
PARAMETERS

o] Character to test.

RETURN VALUE

0O if not a alphabetic character.
10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isalnum, isdigit, ispunct

iscntrl

int iscntri(int c);

DESCRIPTION

Tests for a control character; 0 <= c <=31or c == 127.
PARAMETERS

c Character to test.

RETURN VALUE

O if not a control character.
10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isalpha, 1salnum, isdigit, ispunct

198 rabbit.com

Dynamic C Functions

http://www.rabbit.com

1sCoDone

int isCoDone(CoData * p);

DESCRIPTION

Determine if costatement is initialized and not running.
PARAMETERS

p Address of costatement

RETURN VALUE

1: Costatement is initialized and not running.
0: Otherwise.

LIBRARY
COSTATE.LIB

1sCoRunning

int 1sCoRunning(CoData * p);

DESCRIPTION
Determine if costatement is stopped or running.

PARAMETERS

p Address of costatement.

RETURN VALUE

1 if costatement is running.
O otherwise.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

199

http://www.rabbit.com

isdigit

int isdigit(int c);

DESCRIPTION

Tests for a decimal digit: 0-9
PARAMETERS

c Character to test.

RETURN VALUE

O if not a decimal digit.
10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isxdigit, isalpha, isalpha

200 rabbit.com

Dynamic C Functions

http://www.rabbit.com

Isgraph

int isgraph(int c);

DESCRIPTION

Tests for a printing character other than a space: 33 <= ¢ <= 126
PARAMETERS

c Character to test.

RETURN VALUE

O: cis not a printing character.
10: c is a printing character.

LIBRARY
STRING.LIB

SEE ALSO
isprint, isalpha, isalnum, isdigit, ispunct

islower

int islower(int c);

DESCRIPTION

Tests for lower case character.
PARAMETERS

c Character to test.

RETURN VALUE

0 if not a lower case character.
10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
tolower, toupper, isupper

Dynamic C Functions rabbit.com 201

http://www.rabbit.com

ISspace

int isspace(int c);

DESCRIPTION

Tests for a white space, character, tab, return, newline, vertical tab, form feed, and space:
9<=c<=13and c==32.

PARAMETERS

c Character to test.

RETURN VALUE
O if not, 10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
ispunct

isprint

int isprint(int c);
DESCRIPTION
Tests for printing character, including space: 32 <= c <= 126
PARAMETERS
o Character to test.

RETURN VALUE
0 if not a printing character, 10 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isdigit, isxdigit, isalpha, ispunct, isspace, isalnum, isgraph

202 rabbit.com Dynamic C Functions

http://www.rabbit.com

Ispunct

int ispunct(int c);

DESCRIPTION
Tests for a punctuation character.

Character Decimal Code
space 32

I"#$8% & " ()*+,-./ 33<=c<=47
<=>720@ 58 <=c <=64
N~ 91<=c<=96
{1}~ 123<=c<=126

PARAMETERS
o] Character to test.

RETURN VALUE

O: Not a character.
10: Is a character.

LIBRARY
STRING.LIB

SEE ALSO
isspace

Dynamic C Functions rabbit.com 203

http://www.rabbit.com

Isupper

int isupper(int c);

DESCRIPTION

Tests for upper case character.
PARAMETERS

c Character to test.

RETURN VALUE

O: Is not an uppercase character.
10: Is an uppercase character.

LIBRARY
STRING.LIB

SEE ALSO
tolower, toupper, islower

int isxdigit(int c);

DESCRIPTION

Tests for a hexadecimal digit: 0-9, A-F a-f
PARAMETERS

C Character to test.

RETURN VALUE

0: Not a hexadecimal digit.
10: Is a hexadecimal digit.

LIBRARY
STRING.LIB

SEE ALSO
isdigit, isalpha, isalpha

204 rabbit.com

Dynamic C Functions

http://www.rabbit.com

itoa

char * itoa(int value, char * buf);

DESCRIPTION
Places up to a 5-digit character string, with a minus sign in the leftmost digit when appropriate,
at *but. The string represents value, a signed number.

Leading zeros are suppressed in the character string, except for one zero digit when value =
0. The longest possible string is “-32768.”

PARAMETERS
value 16-bit signed number to convert
buf Character string of converted number in base 10

RETURN VALUE
Pointer to the end (null terminator) of the string in but.

LIBRARY
STDIO.LIB

SEE ALSO
atoi, utoa, ltoa

Dynamic C Functions rabbit.com

205

http://www.rabbit.com

12c_check ack

int 12c_check_ack(void);

DESCRIPTION

Checks if slave pulls data low for ACK on clock pulse. Allows for clocks stretching on SCL
going high.

RETURN VALUE

0: ACK sent from slave.
1: NAK sent from slave.
-1: Timeout occurred.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

206 rabbit.com Dynamic C Functions

http://www.rabbit.com

void 12c_init(void);
DESCRIPTION
Sets up the SCL and SDA port pins for open-drain output.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

12c_read_char

int 12c_read_char(char * ch);

DESCRIPTION

Reads 8 bits from the slave. Allows for clocks stretching on all SCL going high. This is not in
the protocol for 1°C, but allows 12C slaves to be implemented on slower devices.

PARAMETERS
ch A one character return buffer.

RETURN VALUE

0O: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com 207

http://www.rabbit.com

12c_send_ack

int 12c_send_ack(void);

DESCRIPTION

Sends ACK sequence to slave. ACK is usually sent after a successful transfer, where more bytes
are going to be read.

RETURN VALUE

0O: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

12c_send_nak

int i2c_send nak(void);

DESCRIPTION
Sends NAK sequence to slave. NAK is often sent when the transfer is finished.

RETURN VALUE

0O: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

208 rabbit.com Dynamic C Functions

http://www.rabbit.com

12c_start_tx

int 12c_start_tx(void);

DESCRIPTION
Initiates 12C transmission by sending the start sequence, which is defined as a high to low tran-
sition on SDA while SCL is high. The point being that SDA is supposed to remain stable while
SCL is high. If it does not, then that indicates a start (S) or stop (P) condition. This function first
waits for possible clock stretching, which is when a bus peripheral holds SCK low.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com

209

http://www.rabbit.com

12c_startw_tx

int 12c_startw_tx(void);

DESCRIPTION
Initiates 12C transmission by sending the start sequence, which is defined as a high to low tran-
sition on SDA while SCL is high. The point being that SDA is supposed to remain stable while
SCL is high. If it does not, then that indicates a start (S) or stop (P) condition. This function first
waits for possible clock stretching, which is when a bus peripheral holds SCK low.

This function is essentially the same as 1 2c__start_tx() with the addition of a clock stretch
delay, which is 2000 “counts,” inserted after the start sequence. (A count is an iteration through
aloop.)

RETURN VALUE
0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

210 rabbit.com Dynamic C Functions

http://www.rabbit.com

12Cc_stop_tx

void i2c_stop_tx(void);

DESCRIPTION

Sends the stop sequence to the slave, which is defined as bringing SDA high while SCL is high,
i.e., the clock goes high, then data goes high.

LIBRARY
12C_LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

12c_write _char

int 12c_write_char(char d);

DESCRIPTION

Sends 8 bits to slave. Checks if slave pulls data low for ACK on clock pulse. Allows for clocks
stretching on SCL going high.

PARAMETERS

d Character to send

RETURN VALUE

0: Success.
-1: Clock stretching timeout.
1: NAK sent from slave.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com 211

http://www.rabbit.com

kbhit

int kbhit(void);
DESCRIPTION
Detects keystrokes in the Dynamic C Stdio window.

RETURN VALUE
10 if a key has been pressed, O otherwise.

LIBRARY
UTIL.LIB

labs

long labs(long x);

DESCRIPTION
Computes the long integer absolute value of long integer X.

PARAMETERS

X Number to compulte.

RETURN VALUE

X, if x> 0.
-X, otherwise.

LIBRARY
MATH.LIB

SEE ALSO
abs, fabs

212 rabbit.com

Dynamic C Functions

http://www.rabbit.com

Idexp

float bldexp(float x, Int n);

DESCRIPTION
Computes x*(2").

PARAMETERS
X The value between 0.5 inclusive, and 1.0
n An integer

RETURN VALUE
The result of x*(2M).

LIBRARY
MATH.LIB

SEE ALSO
frexp, exp

log

float log(float x);
DESCRIPTION
Computes the logarithm, base e, of real Float value X.
PARAMETERS
X Float value

RETURN VALUE
The function returns —INF and signals a domain error when x < 0.

LIBRARY
MATH.LIB

SEE ALSO
exp, logl0

Dynamic C Functions rabbit.com 213

http://www.rabbit.com

log clean

int log _clean(LogDest Id);

DESCRIPTION

Reset only the specified destination class and stream (encoded as a LogDest value). This is only
applicable to filesystem or XMEM destinations since they are locally persistent storage.
XMEM is automatically cleaned at start-up time, since it is not assumed to be non-volatile.

If this operation is not applicable, 0 is returned with no further action.

Note: Please see the comments at the top of log . 1ib for a description of the message
logging subsystem.

PARAMETER

id Destination class and stream. Use one of the constants LOG_DEST _FS2
or LOG_DEST_XMEM, then OR in the stream number (0-63).

RETURN VALUE

0: success
-2: The stream is out-of-range for the class.

LIBRARY
log.lib

214 rabbit.com Dynamic C Functions

http://www.rabbit.com

log close

int log _close(LogDestClass Idc);

DESCRIPTION
Close the specified class, enumerating all streams. If the destination class is already closed, re-
turns success.

Note: Please see the comments at the top of log. 1ib for a description of the message
logging subsystem.

PARAMETER

Idc Destination class. Use one of the constants LOG_DEST_FS2,
LOG_DEST_XMEM, LOG_DEST_UDP or LOG_DEST_ALL. The latter
case closes all open destinations.

RETURN VALUE
0: success

LIBRARY
log.lib

Dynamic C Functions rabbit.com 215

http://www.rabbit.com

log condition

int log_condition(LogDest ldst);

DESCRIPTION
Return the state of the specified log destination. Destination classes or streams that are not con-
figured cause a -2 return code.

Note: Please see the comments at the top of log. 1ib for a description of the message
logging subsystem.

PARAMETER

ldst Destination class and stream. Use one of the constants LOG_DEST _FS2
or LOG_DEST_XMEM, then OR in the stream number (0-63).

RETURN VALUE

0: Destination not open

1: destination OK

2: destination reached limit of its space quota
-1: error in destination.

-2: destination not configured

LIBRARY
log.lib

216 rabbit.com Dynamic C Functions

http://www.rabbit.com

log format

char * log_format(LogEntry *le, char *buffer, int length, int pfx);

DESCRIPTION
Given the log entry returned by log_next() or log_prev(), format the entry as an ASCI|I string.
The string is constructed in Unix "syslog™ format:
<%d>%.15s %.8s[%d]: %s
where the substitutions are:

%d: facility/priority as decimal number (0-255)

%.15s: date/time as "Mon dd hh:mm:ss"

%s: process name - taken from LOG_UDP_PNAME(0) if defined, else " (empty).
%(d: process ID, but the entry serial number is used instead.

%s: the log entry data.

A null terminator is always added at buffer[length-1], or at the end of the string if it fits in the
buffer. If pfx is zero, then the above syslog prefix is not generated.

Note: Please see the comments at the top of log. 1'ib for a description of the message
logging subsystem.

PARAMETERS

le Log entry result from log_next/log_prev().

buffer Storage for result. Must be dimensioned at least ‘length’.

length Length of buffer. For the maximum sized log entry, the buffer should be
158 bytes. The minimum length must be greater than or equal to 43 (if pfx
true) else 1. If a bad length is passed, the function returns without writing
to buffer.

pTx 0: message text only; do not generate syslog prefix.

1: prefix plus message text.
2: prefix only (up to 7', then null terminator).

RETURN VALUE
buffer address, or NULL if bad length passed.

LIBRARY
log.lib

SEE ALSO
log_next, log_prev

Dynamic C Functions rabbit.com 217

http://www.rabbit.com

log map

uint32 log_map(LogFacPri Ifp);

DESCRIPTION

Return the log destination class and stream, for a given facility/priority code. The result is up to
four destinations packed into a longword. This function merely invokes the macro
LOG_MAP(), which may be overridden by the application, but defaults to just the filesystem.

Note: Please see the comments at the top of log. I'ib for a description of the message
logging subsystem.

PARAMETER
Ifp Facility/priority code. This is a single-byte code specified whenever any
log message is added. Facility is coded in the 5 MSBs, and priority in the
3 LSBs.

RETURN VALUE

Up to four destinations for a message of the specified facility and priority. Each byte in the re-
sulting long word represents a destination/stream. A zero byte indicates no destination. If the
result is all zeros, then a message of this type would be discarded.

LIBRARY
log.lib

218 rabbit.com Dynamic C Functions

http://www.rabbit.com

log next

int log _next(LogDest ldst, LogEntry * le);

DESCRIPTION

Retrieve next log entry. You must call log_seek () before calling this function the first time.

Retrieval of stored log messages proceeds, for example, as follows:

log_seek(ldst, 0); //
log_next(ldst, &L); //
log next(ldst, &L); //
log prev(ldst, &L); //
log_prev(ldst, &L); //
log_prev(ldst, &L); //

seek to start

get 1st entry

get 2nd entry

get 2nd entry again
get 1st entry
returns -1

Note: Please see the comments at the top of log . 1ib for a description of the message

logging subsystem.

PARAMETERS

ldst

Destination class and stream. Use one of the constants LOG_DEST_FS2

or LOG_DEST_XMEM, then OR in the stream number (0-63).

le Storage for result.

RETURN VALUE

non-negative: length of log entry data
-1: End of log or not open
-2: Not a readable log destination class

LIBRARY
log.lib

SEE ALSO
log_seek, log_prev

Dynamic C Functions

rabbit.com

219

http://www.rabbit.com

log open

int log_open(LogDestClass Idc, int clean);

DESCRIPTION

Open the specified logging destination class. If necessary, this enumerates all possible streams
within the class, opening them all (necessary only for FS2 class, since each file needs to be
opened). Class LOG_DEST_ALL opens all configured classes.

If clean is true, then the dest is set to empty log, if that makes sense for the class.

Note: Please see the comments at the top of log . 1 ib for a description of the message
logging subsystem.

PARAMETERS
Idc Destination class: LOG_DEST_FS2, LOG_DEST_UDP,
LOG_DEST XMEM or LOG_DEST_ ALL.
clean Boolean, should the destination be erased before using?

RETURN VALUE

0: success
-1: unknown LogDestClass value

LIBRARY
log.lib

220 rabbit.com Dynamic C Functions

http://www.rabbit.com

log prev

int log _prev(LogDest ldst, LogEntry * le);

DESCRIPTION

Retrieve previous log entry. You must call log_seek () before calling this function the first
time. Retrieval of stored log messages proceeds, for example, as follows:

log_seek(ldst, 1); // seektoend
log_prev(ldst, &L); // getlast entry

log prev(ldst, &L); // get 2nd last entry
log next(ldst, &L); // get 2nd last entry again
log_next(ldst, &L); // getlast entry
log_next(ldst, &L); // returns -1

Note: Please see the comments at the top of log . 1 ib for a description of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST_XMEM, then OR in the stream number (0-63).
le Storage for result.

RETURN VALUE

non-negative = length of log entry data
-1 = Start of log or not open
-2 = Not a readable log destination class

LIBRARY
log.lib

SEE ALSO
log_seek, log_next

Dynamic C Functions rabbit.com 221

http://www.rabbit.com

log put

int log_put(LogFacPri ifp, uint8 fmt, const char *data, int length);

DESCRIPTION

Add a log entry. The specified facility/priority is mapped to the appropriate destination(s), as
configured by the macros. If the destination exists, then the log entry is added; otherwise, the
entry is quietly ignored. If a destination is unable to fit the log entry, and the destination is con-
figured as “circular,” then the first few entries may be deleted to make room. If this cannot be
done, or an unrecoverable error occurs, then -2 is returned. For non-circular destinations, -2 is
returned when it becomes full.

Since multiple log destinations can result from the given facility/priority, it can be difficult to
determine which actual destination caused an error. You can use the log_map () function to
determine the destinations, then check each destination's state using 1og_condition().

Note: Please see the comments at the top of log. I'ib for a description of the message
logging subsystem.

PARAMETERS
ifp Facility/priority code. Facility in 5 MSBs, priority in 3 LSBs.
mt Format code. O for ascii string, others user-defined.
data Pointer to first byte of data to store.
length Length of data. Must be between 0 and 115 (LOG_MAX_MESSAGE) inclu-

sive.

RETURN VALUE
0 = success
-1 = Message too long (over 115).
-2 = Unrecoverable error in destination. This return code usually means that the destination is
unusable and further entries for that destination will probably meet the same fate. This can also
mean that the destination has not been opened.

LIBRARY
log.lib

222 rabbit.com Dynamic C Functions

http://www.rabbit.com

log seek

int log_seek(LogDest ldst, int);

DESCRIPTION

Position log for readback. The next call to log_next () will return the first entry in the log
(if whence=0), or log_prev () will return the last entry (if whence=1).

Note: Please see the comments at the top of log. 1ib for a description of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST_XMEM, then OR in the stream number (0-63).
whence 0: first entry.

1: last entry.
other values reserved.

RETURN VALUE

0 = success.

-1 = Log empty.

-2 = Unrecoverable error or not open.

-3 = Not a seekable or configured log destination class.
-4 = invalid whence parameter.

LIBRARY
log.lib

SEE ALSO
log next, log_prev

Dynamic C Functions rabbit.com

223

http://www.rabbit.com

1ogl0

float 1oglO(float x);

DESCRIPTION

Computes the base 10 logarithm of real Float value X.
PARAMETERS

X Value to compute

RETURN VALUE
The log base 10 of x.

The function returns —INF and signals a domain error when x < 0.

LIBRARY
MATH.LIB

SEE ALSO
log, exp

longjmp

void longjmp(jmp_buf env, int val);

DESCRIPTION

Restores the stack environment saved in array env[]. See the description of setjmp () for
details of use.

Note: you cannot use longjmp () to move out of slice statements, costatements, or
cofunctions.

PARAMETERS
env Environment previously saved with setjymp ().

val Integer result of setjmp ().

LIBRARY
SYS.LIB

SEE ALSO
setjmp

224 rabbit.com Dynamic C Functions

http://www.rabbit.com

loophead

void loophead(void);

DESCRIPTION
This function should be called within the main loop in a program. It is necessary for proper sin-
gle-user cofunction abandonment handling.

When two costatements are requesting access to a single-user cofunction, the first request is
honored and the second request is held. When loophead () notices that the first caller is not
being called each time around the loop, it cancels the request, calls the abandonment code and
allows the second caller in.

See Samples\Cofunc\Cofaband. c for sample code showing abandonment handling.

LIBRARY
COFUNC.LIB

loopinit

void loopinit(void);

DESCRIPTION

This function should be called in the beginning of a program that uses single-user cofunctions.
It initializes internal data structures that are used by loophead().

LIBRARY
COFUNC.LIB

Dynamic C Functions rabbit.com 225

http://www.rabbit.com

Isgrt

unsigned int Isgrt(unsigned long X);

DESCRIPTION

Computes the square root of x. Note that the return value is an unsigned int. The fractional por-
tion of the result is truncated.

PARAMETERS

X long int input for square root computation

RETURN VALUE
Square root of x (fractional portion truncated).

LIBRARY
MATH.LIB

ltoa

char * 1toa(long num, char * ibuf)

DESCRIPTION
This function outputs a signed long number to the character array.

PARAMETERS
num Signed long number.
ibuf Pointer to character array.

RETURN VALUE
Pointer to the same array passed in to hold the result.

LIBRARY
STDIO.LIB

SEE ALSO
I toa

226 rabbit.com Dynamic C Functions

http://www.rabbit.com

Itoan

int Itoan(long num);
DESCRIPTION
This function returns the number of characters required to display a signed long number.

PARAMETERS

num 32-bit signed number.

RETURN VALUE
The number of characters to display signed long number.

LIBRARY
STDIO.LIB

SEE ALSO
I toa

Dynamic C Functions rabbit.com 227

http://www.rabbit.com

Ix format

int Ix_format(FSLXnum Ixn, long wearlevel);

DESCRIPTION

Format a specified file system extent. This must not be called before calling fs_init(). All
files which have either or both metadata and data on this extent are deleted. Formatting can be
quite slow (depending on hardware) so it is best performed after power-up, if at all.

PARAMETERS
Ixn Logical extent number (1.._fs.num_Ix inclusive).
wearlevel Initial wearlevel value. This should be 1 if you have a new flash, and some

larger number if the flash is used. If you are reformatting a flash, you can
use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
10: Failure.

ERRNO VALUES

ENODEYV - no such extent number, or extent is reserved.

EBUSY - one or more files were open on this extent.

EI0 - 1/O error during format. If this occurs, retry the format operation. If it fails again, there
is probably a hardware error.

LIBRARY
FS2.L1B

SEE ALSO
fs_init, fs_format

228 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr_CreatePartition

int mbr_CreatePartition(mbr_drive *drive, int pnum, char type);

DESCRIPTION

Creates or modifies the partition specified. The partition being modified must not be mounted,
and should be released by filesystem use (that is, its Fs_part pointer must be null). The new
partition values should be placed in the appropriate partition structure within the drive structure.
For example,

drive.part[partnum].bootflag = O;
drive.part[partnum].starthead = Oxfe;
drive._part[partnum].startseccyl = 0;
drive.part[partnum].parttype = Oxda;
drive.part[partnum].endhead = Oxfe;
drive.part[partnum].endseccyl = 0;
drive.part[partnum].startsector = start;
drive.part[partnum].partsecsize = ((PART_SZ) / 512) + 1;
mbr_CreatePartition(&drive, partnum, Oxda);

For more information on the partition structure (mbr_part) look in part_defs_lib.

The type parameter should match the type as it currently exists on the drive, unless this is un-
used. Some values for the type parameter are already in use. A list of known partition types is
at:

www.win.tue.nl/~aeb/partitions/partition_types-1._.html

Note: Starting with Dynamic C 9.01, this function BLOCKS!

PARAMETERS
drive Pointer to a MBR drive structure
pnum Partition number to be created or modified
type Type that exists on the physical drive partition now

RETURN VALUE

0 for success

—E 10 for Error trying to read drive/device or structures.

—-EINVAL if drive structure, pnum or type is invalid.

—-EPERM if the partition has not been enumerated or is currently mounted.
-EUNFORMAT if the drive is accessible, but not formatted.

-EBUSY if the device is busy. (Valid prior to Dynamic C 9.01)

LIBRARY
PART.LIB

Dynamic C Functions rabbit.com 229

http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
http://www.rabbit.com

mbr_EnumDevice

mbr_EnumDevice(mbr_drvr *driver, mbr_dev *dev, int devnum, int
(*checktype)()):

DESCRIPTION

This routine is called to learn about devices present on the driver passed in. The device will be
added to the linked list of enumerated devices. Partition information will be filled in from the
master boot record (MBR). Pointers to file system level partition information structures will be

set to NULL.
PARAMETERS
driver Pointer to a DOS contoller structure (setup during init of storage device de-
vicer.)
dev Pointer to a drive structure to be filled in.
devnum Physical device number of device on the driver.
checktype Routine that takes an unsigned char partition type and returns 1 if of sought

type and zero if not. Pass NULL for this parameter to bypass this check.

RETURN VALUE

0 for success

-E 10 for Error trying to read the device or structure.

-EINVAL if devnum invalid or does not exist.

-ENOMEM if memory for page buffer is not available.

-EUNFORMAT if the device is accessible, but not formatted. You can use it provided it is for-
matted/partitioned by either this library or another system.

-EBADPART if the partition table on the device is invalid

-ENOPART if the device does not have any sought partitions, If checktype parameter is NULL,
this test is bypassed. This code is superseded by any other error detected.

-EX1ST if the device has already been enumerated.

-EBUSY if the device is busy.

LIBRARY
PART.LIB

230 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr_FormatDevice

int mbr_FormatDevice(mbr_dev * dev);

DESCRIPTION

Creates or rewrites the Master Boot Record on the device given. The routine will only rewrite
the Boot Loader code if an MBR already exists on the device. The existing partition table will
be preserved. To modify an existing partition table use mbr_CreatePartion.

Note: This routine is NOT PROTECTED from power loss and can make existing parti-
tions inaccessible if interrupted.

Note: This function is BLOCKING.
PARAMETERS
dev Pointer to MBR device structure

RETURN VALUE

0 for success.

—-EEXIST if the MBR exists, writing Boot Loader only
—-E10 for Error trying to read the device or structure
—-EINVAL if the Device structure is not valid

—-ENOMEM if memory for page buffer is not available
—-EPERM if drive has mounted or FS enumerated partition(s)

LIBRARY
PART.LIB

Dynamic C Functions rabbit.com 231

http://www.rabbit.com

mbr_MountPartition

int mbr_MountPartition(mbr_drive * drive, int pnum);

DESCRIPTION

Marks the partition as mounted. It is the higher level codes responsibility to verify that the
Ts_part pointer for a partition is not in use (null) as this would indicate that another system
is in the process of mounting this device.

PARAMETERS
drive Pointer to a drive structure
pnum Partition number to be mounted

RETURN VALUE

0 for success
—EINVAL if Drive or Partition structure or pnum is invalid.
—-ENOPART if Partition does not exist on the device.

LIBRARY
PART.LIB

232 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr_UnmountPartition

int mbr_UnmountPartition(mbr_drive * drive, int pnum);

DESCRIPTION

Marks the partition as unmounted. The partition must not have any user partition data attached
(through mounting at a higher level). If the fs__part pointer for the partition being unmounted
is not null, an EPERM error is returned.

PARAMETERS
drive Pointer to a drive structure containing the partition
pnum Partition number to be unmounted

RETURN VALUE

0 for success
—EINVAL if the Drive structure or pnum is invalid.
—-ENOPART if the partition is enumerated at a higher level.

LIBRARY
PART.LIB

Dynamic C Functions rabbit.com

233

http://www.rabbit.com

mbr_ValidatePartitions

int mbr_ValidatePartitions(mbr_drive * drive);

DESCRIPTION

This routine will validate the partition table contained in the drive structure passed. It will verify
that all partitions fit within the bounds of the drive and that no partitions overlap.

PARAMETERS
drive Pointer to a drive structure

RETURN VALUE

0 for success
—EINVAL if the partition table in the drive structure is invalid.

LIBRARY
PART.LIB

234 rabbit.com Dynamic C Functions

http://www.rabbit.com

md5_append

void md5_append(md5_state_t * pms, char * data, int nbytes);

DESCRIPTION

This function will take a buffer and compute the MD5 hash of its contents, combined with all pre-
vious data passed to it. This function can be called several times to generate the hash of a large
amount of data.

PARAMETERS

md5_append Pointer to the md5_state_ t structure that was initialized by

md5_init.
data Pointer to the data to be hashed.
nbytes Length of the data to be hashed.
LIBRARY
MD5.LI1B

md5_init

void md5_init(md5_state_t * pms);

DESCRIPTION

Initialize the MD5 hash process. Initial values are generated for the structure, and this structure
will identify a particular transaction in all subsequent calls to the md5 library.

PARAMETER

pms Pointer to the md5_state_t structure.

LIBRARY
MD5.LI1B

Dynamic C Functions rabbit.com

235

http://www.rabbit.com

md5_finish

void md5_Ffinish(md5_state t * pms, char digest[16]);

DESCRIPTION
Completes the hash of all the received data and generates the final hash value.

PARAMETERS
pms Pointer to the md5_state_t structure that was initialized by
md5_init.
digest The 16-byte array that the hash value will be written into.
LIBRARY
MD5.LIB

236 rabbit.com Dynamic C Functions

http://www.rabbit.com

memchr

NEAR SYNTAX: void * _n_memchr(void * src, int ch, unsigned int n);
FAR SYNTAX: void far * _f memchr(void far * src, int ch, size t n);

Note: By default, nemchr () is definedto _n_memchr().

DESCRIPTION
Searches up to n characters at memory pointed to by src for character ch.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _f_strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src Pointer to memory source.
ch Character to search for.
n Number of bytes to search.

RETURN VALUE
Pointer to first occurrence of ch if found within n characters. Otherwise returns null.

LIBRARY
STRING.LIB

SEE ALSO
strrchr, strstr

Dynamic C Functions rabbit.com 237

http://www.rabbit.com

memcmp

NEAR SYNTAX: int _n_memcmp(void *sl, void *s2, size_t n);
FAR SYNTAX: int _f memcmp(void far *sl, void far *s2, size t n);

Note: By default, nemcmp() is defined to _n_memcmp().

DESCRIPTION
Performs unsigned character by character comparison of two memory blocks of length n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl Pointer to block 1.
s2 Pointer to block 2.
n Maximum number of bytes to compare.

RETURN VALUE

<0: A character in str1 is less than the corresponding character in str2.
0: strl is identical to str2.
>0: A character in str1l is greater than the corresponding character in str2.

LIBRARY
STRING.LIB

SEE ALSO
strncmp

238 rabbit.com Dynamic C Functions

http://www.rabbit.com

memcpy

NEAR SYNTAX: void *_n_memcpy(void *dst, void *src, unsigned int n);
FAR SYNTAX: void far *_f memcpy(void far *dst, void far *src,
size_t n);

Note: By default, nemcpy () is defined to _n_memcpy().

DESCRIPTION
Copies a block of bytes from one destination to another. Overlap is handled correctly.
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _ ¥ strfunc
where strfunc is the name of the string function.
Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO
memmove, memset

Dynamic C Functions rabbit.com 239

http://www.rabbit.com

memmove

NEAR SYNTAX: void *_n_memmove(void *dst, void *src, unsigned int n);
FAR SYNTAX: _f memmove(void far * dst, void far * src, size_ t n);

Note: By default memmove () is defined to _n_memmove ().

DESCRIPTION
Copies a block of bytes from one destination to another. Overlap is handled correctly.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _f_strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO
memcpy, memset

240 rabbit.com Dynamic C Functions

http://www.rabbit.com

memset

NEAR SYNTAX: void * _n_memset(void * dst, int chr, unsigned int n);
FAR SYNTAX: void far * _f memset(void far * dst, int chr, size tn);

Note: By default, memset() is defined to _n_memset().

DESCRIPTION
Sets the first n bytes of a block of memory pointed to by dst to the character chr.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _f_strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Block of memory to set
chr Character that will be written to memory
n Amount of bytes to set

RETURN VALUE
dst: Pointer to block of memory.

LIBRARY
STRING.LIB

Dynamic C Functions rabbit.com 241

http://www.rabbit.com

mktime

unsigned long mktime(struct tm * timeptr);

DESCRIPTION

Converts the contents of structure pointed to by timeptr into seconds.

struct tm {

char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-23
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 O==sunday
};
PARAMETERS
timeptr Pointer to tm structure

RETURN VALUE
Time in seconds since January 1, 1980.

LIBRARY
RTCLOCK.LIB

SEE ALSO
mktm, tm_rd, tm wr

242 rabbit.com

Dynamic C Functions

http://www.rabbit.com

mktm

unsigned int mktm(struct tm * timeptr, unsigned long time);

DESCRIPTION

Converts the seconds (time) to date and time and fills in the fields of the tm structure with the

result.

struct tm {

char
char
char
char
char
char
char

33

PARAMETERS
timeptr

time

RETURN VALUE
0]

LIBRARY
RTCLOCK.LIB

SEE ALSO

tm_sec; // seconds 0-59

tm_min; // 0-59

tm_hour; // 0-23

tm_mday; // 1-31

tm_mon; // 1-12

tm_year; // 80-147 (1980-2047)

tm_wday; // 0-6 O==sunday
Address to store date and time into structure:

Seconds since January 1, 1980.

mktime, tm_rd, tm wr

Dynamic C Functions

rabbit.com

243

http://www.rabbit.com

modTf

float modf(float x, Int * n);

DESCRIPTION

Splits x into a fraction and integer, ¥ + n.
PARAMETERS

X Floating-point integer

An integer

RETURN VALUE
The integer part in *n and the fractional part satisfies | f] < 1.0

LIBRARY
MATH.LIB

SEE ALSO
fmod, ldexp

244 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf_eraseBlock

int nf_eraseBlock(nf_device * dev, long page);

DESCRIPTION

Erases the block that contains the specified page on the specified NAND flash device. Check
for completion of the erase operation using either nf_i1sBusyRBHW() or
nf_isBusyStatus().

Normally, this function will not allow a bad block to be erased. However, when
NFLASH_ CANERASEBADBLOCKS is defined by the application, the bad block check is not
performed, and the application is allowed to erase any block, regardless of whether it is marked

good or bad.
PARAMETERS
dev Pointer to an initialized nf_device structure
page Page specifies the zero-based number of a NAND flash page in the block

to be erased, relative to the first “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
XChkCorrectECC256

Dynamic C Functions rabbit.com 245

http://www.rabbit.com

nf_getPageCount

long nf_getPageCount(nf_device * dev);

DESCRIPTION
Returns the number of program pages on the particular NAND flash device.
PARAMETERS
dev Pointer to an nf_dev i ce structure for an initialized NAND flash device.

RETURN VALUE
The number of program pages on the NAND flash device.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
XChkCorrectECC256

246 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf_getPageSize

long nf_getPageSize(nf_device * dev);

DESCRIPTION

Returns the size in bytes (excluding “spare” bytes) of each program page on the particular
NAND flash device.

PARAMETERS

dev Pointer to an nf_dev i ce structure for an initialized NAND flash device.

RETURN VALUE

The number of data bytes in the NAND flash's program page, excluding the “spare” bytes used
for ECC storage, etc.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
XChkCorrectECC256

Dynamic C Functions rabbit.com

247

http://www.rabbit.com

nf_initDevice

int nf_initDevice(nf_device * dev, int which);

DESCRIPTION

Initializes a particular NAND flash device. This function must be called before the particular
NAND flash device can be used. See nf_devtable[] in NFLASH. L 1B for the user-updat-
able list of supported NAND flash devices. Note that xal 1oc is called to allocate buffer(s)
memory for each NAND flash device; a run time error will occur if the available xmem RAM
is insufficient.

There are two modes of operation for NAND flash devices: FAT and direct. If you are using the
FAT file system in the default configuration, i.e., the NAND flash has one FAT partition that
takes up the entire device, you do not need to call nT_initDevice(). You only need to call
nf_InitDriver (), which is the default device driver for the FAT file system on a NAND
flash device.

Configurations other than the default one require more work. For example, having two parti-
tions on the device, one a FAT partition and the other a non-FAT partition, require you to know
how to fit more than one partition on a device. A good example of how to do this is in the remote
application upload utility. The functiondIm_initserialflash() in
/L1B/RCM3300/downloadmanager . 1 1b is where to look for code details. The upload
utility is specifically for the RCM3300; however, even without the RCM3300, the utility is still
useful in detailing what is necessary to manage multiple partitions.

The second mode of operation for NAND flash devices is direct access. An application that di-
rectly accesses the NAND flash (using calls such as nf_readPage() and
nTt_writePage()) may define NFLASH_USEERASEBLOCKS 1 ZE to be either O (zero) or
1 (one) before NFLASH . LIB is #used, in order to set the NAND flash driver's main data pro-
gram unit size to either the devices' program page size of 512 bytes or to its erase block size of
16 KB.

If not defined by the application, NFLASH_USEERASEBLOCKS 1 ZE is set to the value 1 in
NFLASH . L 1B; this mode should maximize the NAND flash devices' life.

NFLASH_ USEERASEBLOCKSIZE value 1 sets the driver up to program an erase block size
at a time. This mode may be best for applications with only a few files open in write mode with
larger blocks of data being written, and may be especially good at append operations. The trade
off is reduced flash erasures at the expense of chunkier overhead due to the necessity of per-
forming all 32 pages' ECC calculations for each programming unit written.

NFLASH_USEERASEBLOCKS 1 ZE value 0 sets the driver up to program a program page size
atatime. This mode may be best for applications with more than a few files open in write mode
with smaller blocks of data being written, and may be especially good at interleaved file writes
and/or random access write operations. The trade off is increased flash erasures with the benefit
of spread out overhead due to the necessity of performing only 1 page's ECC calculations per
programming unit written.

248 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf_initDevice (cont’d)

PARAMETERS
dev Pointer to an nf_device structure that will be filled in. An initialized
nT_device struct acts as a handle for the NAND flash device.
which Number of the NAND flash device to initialize. Currently supported de-
vice numbers are 0 for the soldered-on device or 1 for the socketed NAND
flash device.

RETURN VALUE

0O: Success
-1: Unknown index or bad internal I/O port information
—2: Error communicating with flash chip
-3: Unknown flash chip type

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
XChkCorrectECC256

Dynamic C Functions rabbit.com

249

http://www.rabbit.com

nf_InitDriver

int nf_InitDriver(mbr_drvr * driver, void * device_list);

DESCRIPTION
Initializes the NAND flash controller.

PARAMETERS

driver Empty mbr_drvr structure. It must be initialized with this function
before it can be used with the FAT file system. More information on this
structure can be found in the Dynamic C Module document titled, “FAT
File System User’s Manual,” available on the Rabbit Semiconductor
website.

device_list If notnull, this is a pointer to the head of a linked list of nf_device
structures for NAND flash devices that have each already been initialized
by calling nT_initDevice().
If device_list isnull, then this function attempts to initialize all
NAND flash devices and provide a default linked list of nf_device
structures in order from device number 0 on up. If the initialization of a
NAND flash device is unsuccessful, then its n¥_dev i ce structure is not
entered into the linked list.

RETURN VALUE

O: Success
<0: Negative value of a FAT file system error code

LIBRARY
NFLASH_FAT.LIB (This function was introduced in Dynamic C 9.01)

250 rabbit.com Dynamic C Functions

http://www.rabbit.com
http://www.rabbitsemiconductor.com/products/dc/docs.shtml

nf_1sBusyRBHW

int nf_isBusyRBHW(nf_device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy. Uses the hardware Ready/Busy check
method, and can be used to determine the device's busy status even at the start of a read page
command. Note that this function briefly enforces the Ready/Busy input port bit, reads the pin
status, and then restores the port bit to its previous input/output state. There should be little or
no visible disturbance of the LED output which shares the NAND flash's Ready/Busy status
line.

PARAMETERS

dev Pointer to an initialized nf_device structure for the particular NAND
flash chip.

RETURN VALUE

1: Busy
0: Ready, (not currently transferring a page to be read, or erasing or writing a page)
-1: Error (unsupported Ready/Busy input port)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
nf_isBusyStatus

Dynamic C Functions rabbit.com

251

http://www.rabbit.com

nf_isBusyStatus

int nf_isBusyStatus(nf_device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy erasing or writing to a page. Uses the
software status check method, which can not (must not) be used to determine the device's busy
status at the start of a read page command.

PARAMETERS

dev Pointer to an initialized nf_device structure for the particular NAND
flash chip

RETURN VALUE

1: Busy
0: Ready (not currently erasing or writing a page)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
nf_1sBusyRBHW

252 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf_readPage

int nf_readPage(nf_device * dev, long buffer, long page);

DESCRIPTION

Reads data from the specified NAND flash device and page to the specified buffer in xmem.
Note that in the case of most error results at least some of the NAND flash page's content has
been read into the specified buffer. Although the buffer content must be considered unreliable,
it can sometimes be useful for inspecting page content in “bad” blocks.

PARAMETERS
dev Pointer to an initialized nf_device structure
buffer Physical address of the xmem buffer to read data into
page Specifies the zero-based number of a NAND flash page to be read, relative

to the first “good” page’s number.

RETURN VALUE

O: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block
-4: Page read time out error
-5: Uncorrectable data or ECC error

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
XChkCorrectECC256

Dynamic C Functions rabbit.com 253

http://www.rabbit.com

nf_writePage

int nf_writePage(nf_device * dev, long buffer, long page);

DESCRIPTION

Writes data to the specified NAND flash device and page from the specified buffer in xmem.
Check for completion of the write operation using nf_1sBusyRBHW() or
nf_isBusyStatus().

PARAMETERS
dev Pointer to an initialized nf_device structure
buffer Physical address of the xmem data to be written
page Specifies the zero-based number of a NAND flash page to be written, rel-

ative to the first “good” page.

RETURN VALUE

0O: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block
-4: XMEM/root memory transfer error
-5: Erase block or program page operation error.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
XChkCorrectECC256

254 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf XD Detect

long nf_XD_Detect(int debounceMode);

DESCRIPTION
This function attempts to read the xD card 1D and searches the internal device table for that ID
in detect mode 1. In detect mode O it just uses the xD card detect.
Assumes only one XD card present.

WARNING! - This should not be called to determine if it is safe to do write operations if there
is a chance a removable device might be pulled between calling it and the write. It is best used
to determine if a device is present to proceed with an automount after a device has been un-
mounted in SW and removed.

PARAMETERS

debounceMode 0 - no debouncing
1 - busy wait for debouncing interval
2 - for use if function to be called until debouncing interval is done, e.g.,

waitfor(rc = nf_XD Detect(l) !'= -EAGAIN);
—-EAGAIN will be returned until done.

RETURN VALUE

>0: The ID that was found on the device and in the table

-EBUSY: NAND flash device is busy

—-ENODEV: No device found

-EAGAIN: if debounceMode equals 2, then not done debouncing, try again

LIBRARY
NFLASH_FAT.LIB

Dynamic C Functions rabbit.com 255

http://www.rabbit.com

OpenlnputCompressedFile

int OpenlnputCompressedFile(ZFILE * ifp, long fn);

DESCRIPTION

Opens a file for input. This function sets up the LZ compression algorithm window associated
with the ZFILE file. The second parameter is the file handle (FS2) or address (#zimport) of
the input file to be opened. If the file is already compressed, after calling this function the file
can be decompressed by calling ReadCompressedFi le(). If the file handle points to an

uncompressed FS2 file, after calling this function the resulting ZFILE file can be compressed

by calling CompressFile().

The INPUT_COMPRESSI0N_BUFFERS macro controls the memory allocated by this func-
tion. It defaults to 1.

PARAMETERS
ifp ZFILE file descriptor
n Address or handle of input file

RETURN VALUE

O: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO
CloselnputCompressedFile, CompressFile, ReadCompressedFile

256 rabbit.com Dynamic C Functions

http://www.rabbit.com

OpenOutputCompressedFile

int OpenOutputCompressedFile(ZFILE * ofp, int fn);

DESCRIPTION

Open an FS2 file for compressed output. This function sets up the LZ compression algorithm
window and tree associated with the ZFILE file. The second parameter is the file handle (FS2)
of the output file to be written to. Note that this MUST be an FS2 file handle, or the open will
fail.

The OUTPUT_COMPRESSI0N_BUFFERS macro must be defined as a positive non-zero
number if compression is being used.

PARAMETERS
ofp ZFILE file descriptor
n FS2 handle of output file

RETURN VALUE

O: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO
CloseOutputCompressedFile

Dynamic C Functions rabbit.com

257

http://www.rabbit.com

0S_ENTER_CRITICAL

void OS_ENTER_CRITICAL(void);

DESCRIPTION
Enter a critical section. Interrupts will be disabled until 0OS_EXIT_CRITICAL() is called.
Task switching is disabled. This function must be used with great care, since misuse can greatly
increase the latency of your application. Note that nesting OS_ENTER_CRITICAL() calls

will work correctly.

LIBRARY
UCOS2.LIB

OS_EXIT_CRITICAL

void 0S_EXIT_CRITICAL(void);

DESCRIPTION
Exit a critical section. If the corresponding previous OS_ENTER_CRITICAL() call disabled
interrupts (that is, interrupts were not already disabled), then interrupts will be enabled. Other-
wise, interrupts will remain disabled. Hence, nesting calls to OS_ENTER_CRITICAL() will

work correctly.

LIBRARY
UCOS2.LIB

258 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagAccept

0S_FLAGS OSFlagAccept(OS_FLAG_GRP * pgrp, 0OS_FLAGS flags, INT8U
wait_type, INT8U * err);

DESCRIPTION

This function is called to check the status of a combination of bits to be set or cleared in an event
flag group. Your application can check for ANY bit to be set/cleared or ALL bits to be
set/cleared.

This call does not block if the desired flags are not present.

PARAMETERS
pgrp Pointer to the desired event flag group.
flags Bit pattern indicating which bit(s) (i.e. flags) you wish to check. E.g., if
your application wants to wait for bits 0 and 1 then Flags should be 0x03.
wait_type Specifies whether you are checking for ALL bits to be set/cleared or ANY

of the bits to be set/cleared. You can specify the following argument:

* OS_FLAG_WAIT_CLR_ALL - You will check ALL bits in Flags to
be clear (0)

* OS_FLAG_WAIT_CLR_ANY - You will check ANY bit in Flags to
be clear (0)

* OS_FLAG_WAIT_SET_ALL - You will check ALL bits in Flags to
be set (1)

 OS_FLAG_WAIT_SET_ANY - You will check ANY bit in Flags to
be set (1)

Note: Add OS_FLAG_CONSUME if you want the event flag to be
consumed by the call. Example, to wait for any flag in a group AND
then clear the flags that are present, set the wait_type parameter
to:

0S_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

Dynamic C Functions rabbit.com 259

http://www.rabbit.com

OSFlagAccept (cont’d)

err Pointer to an error code. Possible values are:

*« OS_NO_ERR - No error

0S_ERR_EVENT_TYPE - Not pointing to an event flag group
0S_FLAG_ERR_WAIT_TYPE - Proper wait_type argument not
specified.

OS_FLAG_INVALID_PGRP - null pointer passed instead of the event
flag group handle.

0S_FLAG_ERR_NOT_RDY - Flags not available.

RETURN VALUE
The state of the flags in the event flag group.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

260 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagCreate

0S_FLAG_GRP * OSFlagCreate(0OS_FLAGS flags, INT8U * err);

DESCRIPTION
This function is called to create an event flag group.

PARAMETERS
flags Contains the initial value to store in the event flag group.
err Pointer to an error code that will be returned to your application:

* 0OS_NO_ERR - The call was successful.

* OS_ERR_CREATE_ ISR - Attempt made to create an Event Flag from
an ISR.

* OS_FLAG_GRP_DEPLETED - There are no more event flag groups

RETURN VALUE
A pointer to an event flag group or a null pointer if no more groups are available.

LIBRARY
OS_FLAG.C (Prior to DC 8:UC0S2.LIB)

Dynamic C Functions rabbit.com

261

http://www.rabbit.com

OSFlagDel

0S_FLAG_GRP * OSFlagDel (OS_FLAG_GRP * pgrp, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes an event flag group and readies all tasks pending on the event flag group.
Note that:

* This function must be used with care. Tasks that would normally expect the presence of the
event flag group must check the return code of OSFlagAccept() and OSFlagPend().

« This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Deletes the event flag group only if no task pend-
in
. OSg_DEL_ALWAYS - Deletes the event flag group even if tasks are wait-
ing. In this case, all the tasks pending will be readied..
err Pointer to an error code. May be one of the following values:

* OS_NO_ERR - Success, the event flag group was deleted

* OS_ERR_DEL_ ISR - If you attempted to delete the event flag group
from an ISR

* OS_FLAG_INVALID_PGRP - If pgrp is a null pointer.

 OS_ERR_EVENT_TYPE - You are not pointing to an event flag group

* OS_ERR_EVENT_TYPE - If you didn't pass a pointer to an event flag
group

* OS_ERR_INVALID_OPT - Invalid option was specified

* OS_ERR_TASK_WAITING - One or more tasks were waiting on the
event flag group.

RETURN VALUE

pevent Error.
(0S_EVENT *)O0 Semaphore was successfully deleted.
LIBRARY

OS_FLAG.C (Prior to DC 8:UC0S2.LIB)

262 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPend

0S_FLAGS OSFlagPend(OS_FLAG_GRP * pgrp, OS_FLAGS flags, INT8U

wait_type,

DESCRIPTION

INT16U timeout, INT8U * err);

This function is called to wait for a combination of bits to be set in an event flag group. Your
application can wait for ANY bit to be set or ALL bits to be set.

PARAMETERS

pgrp
flags

wait_type

timeout

Pointer to the desired event flag group.

Bit pattern indicating which bit(s) (i.e. flags) you wish to wait for. E.qg. if

your application wants to wait for bits 0 and 1 then Flags should be 0x03.

Specifies whether you want ALL bits to be set or ANY of the bits to be set.
You can specify the following argument:

* OS_FLAG_WAIT_CLR_ALL - You will wait for ALL bits in mask to
be clear (0)

 OS_FLAG_WAIT_SET_ALL - You will wait for ALL bits in mask to
be set (1)

* OS_FLAG_WAIT_CLR_ANY - You will wait for ANY bit in mask to
be clear (0)

* OS_FLAG_WAIT_SET_ANY - You will wait for ANY bit in mask to
be set (1)

Note: Add OS_FLAG_CONSUME if you want the event flag to be
consumed by the call. E.g., to wait for any flag in a group AND then
clear the flags that are present, set the wait_type parameter to:

0S_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

An optional timeout (in clock ticks) that your task will wait for the desired
bit combination. If you specify 0, however, your task will wait forever at
the specified event flag group or, until a message arrives.

Dynamic C Functions

rabbit.com

263

http://www.rabbit.com

OSFlagPend (cont’d)

err Pointer to an error code. Possible values are:

OS_NO_ERR - The desired bits have been set within the specified time-
out.

0OS_ERR_PEND_ ISR - If you tried to PEND from an ISR.
0S_FLAG_INVALID_PGRP - If pgrp is a null pointer.
0S_ERR_EVENT_TYPE - You are not pointing to an event flag group
0S_TIMEOUT - The bit(s) have not been set in the specified time-out.
0S_FLAG_ERR_WAIT_TYPE - You didn't specify a proper
wait_type argument.

RETURN VALUE

The new state of the flags in the event flag group when the task is resumed or, O if a timeout or
an error occurred.

LIBRARY
0S_FLAG.C (Prior to DC 8:UC0S2.LIB)

264 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPost

0S_FLAGS OSFlagPost(OS_FLAG_GRP * pgrp, OS_FLAGS flags, INT8U opt,
INT8U * err);

DESCRIPTION
This function is called to set or clear some bits in an event flag group. The bits to set or clear
are specified by a bitmask. Warnings:

 The execution time of this function depends on the number of tasks waiting on the event flag
group.

» The amount of time interrupts are DISABLED depends on the number of tasks waiting on the
event flag group.

PARAMETERS
parp Pointer to the desired event flag group.

flags If opt (see below) is OS_FLAG_SET, each bit that is set in Flags will
set the corresponding bit in the event flag group. E.g., to set bits 0, 4 and 5
you would set Flags to:

0x31 (note, bit 0 is least significant bit)

If opt (see below) is OS_FLAG_CLR, each bit that is set in flags will
CLEAR the corresponding bit in the event flag group. E.g., to clear bits 0,
4 and 5 you would specify flags as:

0x31 (note, bit 0 is least significant bit)

opt Indicates whether the flags will be:
set (OS_FLAG_SET), or cleared (OS_FLAG_CLR)

err Pointer to an error code. Valid values are:

* OS_NO_ERR - The call was successful.

* OS_FLAG_INVALID_PGRP - null pointer passed.

« OS_ERR_EVENT_TYPE - Not pointing to an event flag group
* OS_FLAG_INVALID_OPT - Invalid option specified.

RETURN VALUE
The new value of the event flags bits that are still set.

LIBRARY
0S_FLAG.C (Prior to DC 8:UC0S2.LIB)

Dynamic C Functions rabbit.com 265

http://www.rabbit.com

OSFlagQuery

0S_FLAGS OSFlagQuery(OS_FLAG_GRP * pgrp, INT8U * err);

DESCRIPTION
This function is used to check the value of the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
err Pointer to an error code returned to the called:

* 0OS_NO_ERR - The call was successful
* OS_FLAG_INVALID_PGRP - null pointer passed.
*« OS_ERR_EVENT_TYPE - Not pointing to an event flag group

RETURN VALUE
The current value of the event flag group.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

266 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSInit

void OSInit(void);
DESCRIPTION
Initializes uC/OS-I1 data; must be called before any other uC/OS-I1 functions are called.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt, OSStart

OSMboxAccept

void * OSMboxAccept(OS_EVENT * pevent);

DESCRIPTION

Checks the mailbox to see if a message is available. Unlike OSMboxPend (),
OSMboxAccept () does not suspend the calling task if a message is not available.

PARAMETERS

pevent Pointer to the mailbox’s event control block.

RETURN VALUE

1= (void *)O This is the message in the mailbox if one is available. The mailbox
is cleared so the next time OSMboxAccept() is called, the mailbox
will be empty.

== (void *)0 The mailbox is empty, or pevent is a null pointer, or you didn't

pass the proper event pointer.

LIBRARY
0S_MBOX.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSMboxCreate, OSMboxPend, OSMboxPost, OSMboxQuery

Dynamic C Functions rabbit.com 267

http://www.rabbit.com

OSMboxCreate

OS_EVENT * OSMboxCreate(void * msg);

DESCRIPTION
Creates a message mailbox if event control blocks are available.
PARAMETERS

msg Pointer to a message to put in the mailbox. If this value is set to the null
pointer (i.e., (void *)O0) then the mailbox will be considered empty.

RETURN VALUE

1= (void *)0 A pointer to the event control clock (OS_EVENT) associated with
the created mailbox.

== (void *)0 No event control blocks were available.

LIBRARY
0S_MBOX.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSMboxAccept, OSMboxPend, OSMboxPost, OSMboxQuery

268 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxDel

OS_EVENT * OSMboxDel (OS_EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes a mailbox and readies all tasks pending on the mailbox. Note that:

« This function must be used with care. Tasks that would normally expect the presence of the
mailbox MUST check the return code of OSMboxPend ().

» OSMboxAccept() callers will not know that the intended mailbox has been deleted unless
they check pevent to see that it's a null pointer.

* This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the mailbox.

» Because ALL tasks pending on the mailbox will be readied, you MUST be careful in
applications where the mailbox is used for mutual exclusion because the resource(s) will no
longer be guarded by the mailbox.

PARAMETERS
pevent

opt

err

RETURN VALUE

I= (void *)O

== (void *)0
LIBRARY

0S_MBOX.C

Pointer to the event control block associated with the desired mailbox.

May be one of the following delete options:

* OS_DEL_NO_PEND - Delete mailbox only if no task pending

* OS_DEL_ALWAYS - Deletes the mailbox even if tasks are waiting. In
this case, all the tasks pending will be readied.

Pointer to an error code that can contain one of the following values:

* OS_NO_ERR - Call was successful; mailbox was deleted
0S_ERR_DEL_ ISR - Attempt to delete mailbox from ISR
OS_ERR_INVALID_OPT - Invalid option was specified

0S_ERR_TASK_WAITING - One or more tasks were waiting on the
mailbox

OS_ERR_EVENT_TYPE - No pointer passed to a mailbox
0S_ERR_PEVENT_NULL - If pevent is a null pointer.

Is a pointer to the event control clock (OS_EVENT) associated with
the created mailbox

If no event control blocks were available

Dynamic C Functions

rabbit.com

269

http://www.rabbit.com

OSMboxPend

void *0OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

Waits for a message to be sent to a mailbox.

PARAMETERS
pevent

timeout

err

RETURN VALUE
I= (void *)O
== (void *)0

LIBRARY

Pointer to mailbox’s event control block.

Allows task to resume execution if a message was not received by the num-
ber of clock ticks specified. Specifying 0 means the task is willing to wait
forever.

Pointer to a variable for holding an error code. Possible error messages are:

* OS_NO_ERR: The call was successful and the task received a message.

0OS_TIMEOUT: A message was not received within the specified time-
out

0S_ERR_EVENT_TYPE: Invalid event type

0OS_ERR_PEND_ ISR Ifthis function was called from an ISR and the
result would lead to a suspension.

0S_ERR_PEVENT_NULL: If pevent is a null pointer

A pointer to the message received

No message was received, or pevent is a null pointer, or the prop-
er pointer to the event control block was not passed.

0S_MBOX.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPost, OSMboxQuery

270

rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxPost

INT8U OSMboxPost(OS_EVENT * pevent, void * msg);

DESCRIPTION
Sends a message to the specified mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to message to be posted. A null pointer must not be sent.

RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.

0S_MBOX_FULL The mailbox already contains a message. Only one message at a
time can be sent and thus, the message MUST be consumed be-
fore another can be sent.

0S_ERR_EVENT_TYPE Attempting to post to a non-mailbox.
0S_ERR_PEVENT_NULL If pevent is a null pointer
OS_ERR_POST_NULL_PTR If you are attempting to post a null pointer

LIBRARY
0S_MBOX.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxQuery

Dynamic C Functions rabbit.com 271

http://www.rabbit.com

OSMboxPostOpt

INT8U OSMboxPostOpt(OS_EVENT * pevent, void * msg, INT8U opt);

DESCRIPTION
This function sends a message to a mailbox.

Note: Interrupts can be disabled for a long time if you do a “broadcast.” The interrupt dis-
able time is proportional to the number of tasks waiting on the mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST_OPT_NONE - POST to a single waiting task (Identical to
0S_MboxPost())

*« OS_POST_OPT_BROADCAST - POST to ALL tasks that are waiting on

the mailbox
RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.
0S_MBOX_FULL The mailbox already contains a message. Only one message at a

time can be sent and thus, the message MUST be consumed be-
fore another can be sent.

0S_ERR_EVENT_TYPE Attempting to post to a non-mailbox.
0S_ERR_PEVENT_NULL If pevent isa null pointer
OS_ERR_POST_NULL_PTR If you are attempting to post a null pointer

LIBRARY
0S_MBOX.C (Prior to DC 8:UC0S2.LIB)

272 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxQuery

INT8U OSMboxQuery(OS_EVENT * pevent, 0OS_MBOX_DATA * pdata);

DESCRIPTION
Obtains information about a message mailbox.

PARAMETERS
pevent Pointer to message mailbox’s event control block.
pdata Pointer to a data structure for information about the message mailbox

RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.
0OS_ERR_EVENT_TYPE Attempting to obtain data from a non mailbox.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxPost

Dynamic C Functions rabbit.com

273

http://www.rabbit.com

OSMemCreate

0S_MEM * OSMemCreate(void * addr, INT32U nblks, INT32U blksize,
INT8U * err);

DESCRIPTION
Creates a fixed-sized memory partition that will be managed by pC/OS-II.

PARAMETERS
addr Pointer to starting address of the partition.
nblks Number of memory blocks to create in the partition.
blksize The size (in bytes) of the memory blocks.
err Pointer to variable containing an error message.

RETURN VALUE
Pointer to the created memory partition control block if one is available, null pointer otherwise.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemGet, OSMemPut, OSMemQuery

274 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMemGet

void * OSMemGet(OS_MEM * pmem, INT8U * err);

DESCRIPTION
Gets a memory block from the specified partition.

PARAMETERS
pmem Pointer to partition’s memory control block
err Pointer to variable containing an error message

RETURN VALUE
Pointer to a memory block or a null pointer if an error condition is detected.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemPut, OSMemQuery

Dynamic C Functions rabbit.com

275

http://www.rabbit.com

OSMemPut

INT8U OSMemPut(OS_MEM * pmem, void * pblk);

DESCRIPTION

Returns a memory block to a partition.

PARAMETERS
pmem
pblk
RETURN VALUE
0S_NO_ERR
0S_MEM_FULL

LIBRARY
UCOS2.LIB

SEE ALSO

Pointer to the partition’s memory control block.

Pointer to the memory block being released.

The memory block was inserted into the partition.

If returning a memory block to an already FULL memory partition. (More

blocks were freed than allocated!)

OSMemCreate, OSMemGet, OSMemQuery

276

rabbit.com

Dynamic C Functions

http://www.rabbit.com

OSMemQuery

INT8U OSMemQuery(OS_MEM * pmem, OS_MEM_DATA * pdata);

DESCRIPTION

Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS
pmem Pointer to partition’s memory control block.
pdata Pointer to structure for holding information about the partition.

RETURN VALUE

0S_NO_ERR This function always returns no error.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemPut

Dynamic C Functions rabbit.com

277

http://www.rabbit.com

OSMutexAccept

INT8U OSMutexAccept(OS_EVENT * pevent, INT8U * err);

DESCRIPTION

This function checks the mutual exclusion semaphore to see if a resource is available. Unlike
OSMutexPend (), OSMutexAccept() does not suspend the calling task if the resource is
not available or the event did not occur. This function cannot be called from an ISR because
mutual exclusion semaphores are intended to be used by tasks only.

PARAMETERS
pevent Pointer to the event control block.
err Pointer to an error code that will be returned to your application:

* 0OS_NO_ERR - if the call was successful.

* OS_ERR_EVENT_TYPE - if pevent is not a pointer to a mutex
*« OS_ERR_PEVENT_NULL - pevent is a null pointer

* OS_ERR_PEND_ISR - if you called this function from an ISR

RETURN VALUE
1: Success, the resource is available and the mutual exclusion semaphore is acquired.

O: Error, either the resource is not available, or you didn't pass a pointer to a mutual exclusion
semaphore, or you called this function from an ISR.

LIBRARY
0S_MUTEX.C

278 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexCreate

OS_EVENT *OSMutexCreate(INT8U prio, INT8U * err);

DESCRIPTION

This function creates a mutual exclusion semaphore. Note that:

» The LEAST significant 8 bits of the OSEventCnt field of the mutex’s event control block are
used to hold the priority number of the task owning the mutex or OXFF if no task owns the

mutex.

» The MOST significant 8 bits of the OSEventCnt field of the mutex’s event control block are
used to hold the priority number to use to reduce priority inversion.

PARAMETERS

prio

err

RETURN VALUE

I= (void *)O

== (void *)0
LIBRARY

0S_MUTEX.C

The priority to use when accessing the mutual exclusion semaphore. In
other words, when the semaphore is acquired and a higher priority task at-
tempts to obtain the semaphore then the priority of the task owning the
semaphore is raised to this priority. It is assumed that you will specify a pri-
ority that is LOWER in value than ANY of the tasks competing for the mu-
tex.

Pointer to error code that will be returned to your application:

* 0OS_NO_ERR - if the call was successful.

» 0S_ERR_CREATE_ ISR - you attempted to create a mutex froman ISR

* OS_PRIO_EXIST - atask at the priority inheritance priority already ex-
ist.

* OS_ERR_PEVENT_NULL - no more event control blocks available.

* OS_PRIO_INVALID - if the priority you specify is higher that the max-
imum allowed (i.e. >0S_LOWEST_PRI10)

Pointer to the event control clock (OS_EVENT) associated with
the created mutex.

Error detected.

Dynamic C Functions

rabbit.com

279

http://www.rabbit.com

OSMutexDel

OS_EVENT *OSMutexDel (OS_EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes a mutual exclusion semaphore and readies all tasks pending on it. Note
that:

* This function must be used with care. Tasks that would normally expect the presence of the
mutex MUST check the return code of OSMutexPend().

« This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the mutex.

» Because ALL tasks pending on the mutex will be readied, you MUST be careful because the
resource(s) will no longer be guarded by the mutex.

PARAMETERS
pevent Pointer to mutex’s event control block.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete mutex only if no task pending
* OS_DEL_ALWAYS - Deletes the mutex even if tasks are waiting. In this
case, all pending tasks will be readied.
err Pointer to an error code that can contain one of the following values:

0S_NO_ERR - The call was successful and the mutex was deleted
OS_ERR_DEL_ ISR - Attempted to delete the mutex from an ISR
0S_ERR_INVALID_OPT - An invalid option was specified
0S_ERR_TASK_WAITING - One or more tasks were waiting on the

mutex
* OS_ERR_EVENT_TYPE - If you didn't pass a pointer to a mutex point-
er.
RETURN VALUE
pevent On error.
(0S_EVENT *)0 Mutex was deleted.
LIBRARY
0S_MUTEX.C

280 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexPend

void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

This function waits for a mutual exclusion semaphore. Note that:

 The task that owns the Mutex MUST NOT pend on any other event while it owns the mutex.
» You MUST NOT change the priority of the task that owns the mutex.

PARAMETERS
pevent

timeout

err

LIBRARY
O0S_MUTEX.C

Pointer to mutex’s event control block.

Optional timeout period (in clock ticks). If non-zero, your task will wait for
the resource up to the amount of time specified by this argument. If you
specify 0, however, your task will wait forever at the specified mutex or,
until the resource becomes available.

Pointer to where an error message will be deposited. Possible error mes-
sages are:

0S_NO_ERR - The call was successful and your task owns the mutex
OS_TIMEOUT - The mutex was not available within the specified time.
0S_ERR_EVENT_TYPE - If you didn't pass a pointer to a mutex
0S_ERR_PEVENT_NULL - pevent is a null pointer

0OS_ERR_PEND__ ISR - If you called this function from an ISR and the re-
sult would lead to a suspension.

Dynamic C Functions

rabbit.com

281

http://www.rabbit.com

OSMutexPost

INT8U OSMutexPost(OS_EVENT * pevent);
DESCRIPTION
This function signals a mutual exclusion semaphore.

PARAMETERS

pevent Pointer to mutex’s event control block.

RETURN VALUE

0S_NO_ERR The call was successful and the mutex was signaled.
0S_ERR_EVENT_TYPE If you didn't pass a pointer to a mutex
0S_ERR_PEVENT_NULL pevent is a null pointer

OS_ERR_POST_ISR Attempted to post from an ISR (invalid for mutexes)

OS_ERR_NOT_MUTEX_OWNER The task that did the post is NOT the owner of the MUTEX.

LIBRARY
0S_MUTEX.C

282 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexQuery

INT8U OSMutexQuery(OS_EVENT * pevent, OS_MUTEX_DATA * pdata);

DESCRIPTION
This function obtains information about a mutex.

PARAMETERS
pevent Pointer to the event control block associated with the desired mutex.
pdata Pointer to a structure that will contain information about the mutex.

RETURN VALUE
0S_NO_ERR The call was successful and the message was sent
0S_ERR_QUERY_ISR Function was called from an ISR
OS_ERR_PEVENT_NULL pevent isa null pointer
0S_ERR_EVENT_TYPE Attempting to obtain data from a non mutex.

LIBRARY
OS_MUTEX.C

Dynamic C Functions rabbit.com 283

http://www.rabbit.com

OSQAccept

void * 0SQAccept(OS_EVENT * pevent);

DESCRIPTION

Checks the queue to see if a message is available. Unlike 0SQPend (), with 0SQAccept()
the calling task is not suspended if a message is unavailable.

PARAMETERS

pevent Pointer to the message queue’s event control block.

RETURN VALUE
Pointer to message in the queue if one is available, null pointer otherwise.

LIBRARY
OS _Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
0SQCreate, 0SQFlush, 0SQPend, 0SQPost, 0SQPostFront, 0SQQuery

284 rabbit.com Dynamic C Functions

http://www.rabbit.com

0SQCreate

OS_EVENT * 0OSQCreate(void ** start, INT16U gsize);

DESCRIPTION
Creates a message queue if event control blocks are available.

PARAMETERS
start Pointer to the base address of the message queue storage area. The storage
area MUST be declared an array of pointers to void: void
*MessageStorage[gsize].
gsize Number of elements in the storage area.

RETURN VALUE

Pointer to message queue’s event control block or null pointer if no event control blocks were
available.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
0OSQAccept, OSQFlush, 0SQPend, 0SQPost, OSQPostFront, 0SQQuery

Dynamic C Functions rabbit.com

285

http://www.rabbit.com

0SQDel

OS_EVENT * 0SQDel(OS_EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION
Deletes a message queue and readies all tasks pending on the queue. Note that:

* This function must be used with care. Tasks that would normally expect the presence of the
gueue MUST check the return code of 0SQPend ().

* 0SQAccept() callers will not know that the intended queue has been deleted unless they
check pevent to see that it's a null pointer.

* This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the queue.

» Because all tasks pending on the queue will be readied, you must be careful in applications
where the queue is used for mutual exclusion because the resource(s) will no longer be
guarded by the queue.

« If the storage for the message queue was allocated dynamically (i.e., usingamal loc () type
call) then your application must release the memory storage by call the counterpart call of the
dynamic allocation scheme used. If the queue storage was created statically then, the storage
can be reused.

PARAMETERS
pevent Pointer to the queue’s event control block.
opt May be one of the following delete options:
» OS_DEL_NO_PEND - Delete queue only if no task pending
* OS_DEL_ALWAYS - Deletes the queue even if tasks are waiting. In this
case, all the tasks pending will be readied.
err Pointer to an error code that can contain one of the following:

0S_NO_ERR - Call was successful and queue was deleted
OS_ERR_DEL_ ISR - Attempt to delete queue from an ISR
0S_ERR_INVALID_OPT - Invalid option was specified

OS_ERR_TASK_WAITING - One or more tasks were waiting on the
queue

0S_ERR_EVENT_TYPE - You didn't pass a pointer to a queue
OS_ERR_PEVENT_NULL - If pevent is a null pointer.

RETURN VALUE

pevent Error
(0S_EVENT *)0 The queue was successfully deleted.
LIBRARY

0S_Q.C (Prior to DC 8:UC0S2.LIB)

286 rabbit.com Dynamic C Functions

http://www.rabbit.com

0SOQF lush

INT8U OSQFlush(OS_EVENT * pevent);

DESCRIPTION
Flushes the contents of the message queue.
PARAMETERS

pevent Pointer to message queue’s event control block.

RETURN VALUE
0S_NO_ERR Success.
0S_ERR_EVENT_TYPE A pointer to a queue was not passed.
OS_ERR_PEVENT_NULL If pevent isa null pointer.

LIBRARY
OS _Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
0OSQAccept, 0SQCreate, 0SQPend, OSQPost, 0SQPostFront, 0SQQuery

Dynamic C Functions rabbit.com 287

http://www.rabbit.com

0SQPend

void * 0SQPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION
Waits for a message to be sent to a queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
timeout Allow task to resume execution if a message was not received by the num-
ber of clock ticks specified. Specifying 0 means the task is willing to wait
forever.
err Pointer to a variable for holding an error code.

RETURN VALUE
Pointer to a message or, if a timeout occurs, a null pointer.

LIBRARY
OS _Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
0OSQAccept, 0SQCreate, 0SQFlush, 0SQPost, 0OSQPostFront, 0SQQuery

288 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPost

INT8U 0SQPost(OS_EVENT * pevent, void * msg);

DESCRIPTION
Sends a message to the specified queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.
0S_Q_FULL The queue cannot accept any more messages because it is full.

OS_ERR_EVENT_TYPE If a pointer to a queue not passed.

0S_ERR_PEVENT_NULL If pevent is a null pointer.
OS_ERR_POST_NULL_PTR If attempting to post to a null pointer.
LIBRARY

OS _Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
0SQAccept, O0SQCreate, 0SQFlush, 0SQPend, OSQPostFront, 0SQQuery

Dynamic C Functions rabbit.com 289

http://www.rabbit.com

OSQPostFront

INT8U 0SQPostFront(OS_EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified queue, but unlike 0SQPost (), the message is posted at the
front instead of the end of the queue. Using 0SQPostFront() allows ‘priority’ messages to

be sent.
PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

0S_NO_ERR The call was successful and the message was sent.
0S_Q_FuLL The queue cannot accept any more messages because it is full.
0S_ERR_EVENT_TYPE A pointer to a queue was not passed.
0S_ERR_PEVENT_NULL If pevent is a null pointer.

OS_ERR_POST_NULL_PTR Attempting to post to a non mailbox.

LIBRARY
OS _Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
0OSQAccept, 0SQCreate, OSQFlush, 0SQPend, OSQPost, 0SQQuery

290 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPostOpt

INT8U 0SQPostOpt(OS_EVENT * pevent, void * msg, INT8U opt);

DESCRIPTION

This function sends a message to a queue. This call has been added to reduce code size since it
can replace both 0SQPost () and 0SQPostFront(). Also, this function adds the capabil-
ity to broadcast a message to all tasks waiting on the message queue.

Note: Interrupts can be disabled for a long time if you do a “broadcast.” In fact, the inter-
rupt disable time is proportional to the number of tasks waiting on the queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

opt Determines the type of POST performed:

* OS_POST_OPT_NONE - POST to a single waiting task (Identical to
0SQPost())

* OS_POST_OPT_BROADCAST - POST to ALL tasks that are waiting on
the queue

* OS_POST_OPT_FRONT - POST as LIFO (Simulates
0SQPostFront())

The last 2 flags may be combined:

* OS_POST_OPT_FRONT + 0S_POST_OPT_BROADCAST - is identi-
cal to 0SQPostFront() except that it will broadcast msg to all wait-

ing tasks.
RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.
0S_Q_FULL The queue is full, cannot accept any more messages.
OS_ERR_EVENT_TYPE A pointer to a queue was not passed.

0S_ERR_PEVENT_NULL If pevent is a null pointer.
0S_ERR_POST_NULL_PTR Attempting to post a null pointer.

LIBRARY
0S_Q.C (Prior to DC 8:UC0S2.LIB)

Dynamic C Functions rabbit.com 291

http://www.rabbit.com

0SQQuery

INT8U 0SQQuery(OS_EVENT * pevent, 0S_Q DATA * pdata);

DESCRIPTION
Obtains information about a message queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
pdata Pointer to a data structure for message queue information.

RETURN VALUE
0S_NO_ERR The call was successful and the message was sent
0OS_ERR_EVENT_TYPE Attempting to obtain data from a non queue.
OS_ERR_PEVENT_NULL If pevent is a null pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO

0OSQAccept, 0SQCreate, OSQFlush, 0SQPend, OSQPost, 0OSQPostFront

292 rabbit.com

Dynamic C Functions

http://www.rabbit.com

0SSchedLock

void 0OSSchedLock(void);

DESCRIPTION

Prevents task rescheduling. This allows an application to prevent context switches until it is
ready for them. There must be a matched call to 0SSchedUnlock() for every call to
0SSchedLock().

LIBRARY
UCOS2.LIB

SEE ALSO
0SSchedUnlock

0SSchedUnlock

void 0OSSchedUnlock(void);

DESCRIPTION

Allow task rescheduling. There must be a matched call to 0SSchedUnlock() forevery call
to 0SSchedLock().

LIBRARY
UCOS2.L1IB

SEE ALSO
0SSchedLock

Dynamic C Functions rabbit.com 293

http://www.rabbit.com

0SSemAccept

INT16U OSSemAccept(OS_EVENT * pevent);

DESCRIPTION

This function checks the semaphore to see if a resource is available or if an event occurred. Un-
like 0SSemPend (), 0SSemAccept() does not suspend the calling task if the resource is
not available or the event did not occur.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value:
If >0, semaphore value is decremented; value is returned before the decrement.

If O, then either resource is unavailable, event did not occur, or null or invalid pointer was
passed to the function.

LIBRARY
UCOS2.LIB

SEE ALSO
0SSemCreate, 0SSemPend, OSSemPost, 0SSemQuery

294 rabbit.com Dynamic C Functions

http://www.rabbit.com

O0SSemCreate

OS_EVENT * 0OSSemCreate(INT16U cnt);

DESCRIPTION
Creates a semaphore.
PARAMETERS
cnt The initial value of the semaphore.

RETURN VALUE

Pointer to the event control block (OS_EVENT) associated with the created semaphore, or null
if no event control block is available.

LIBRARY
UCOS2.LIB

SEE ALSO
0SSemAccept, 0SSemPend, O0SSemPost, 0SSemQuery

0SSemPend

void 0SSemPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION
Waits on a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
timeout Time in clock ticks to wait for the resource. If 0, the task will wait until the
resource becomes available or the event occurs.
err Pointer to error message.
LIBRARY
UCOS2.LIB
SEE ALSO

0SSemAccept, 0SSemCreate, 0SSemPost, 0SSemQuery

Dynamic C Functions rabbit.com

295

http://www.rabbit.com

0SSemPost

INT8U 0SSemPost(OS_EVENT * pevent);

DESCRIPTION
This function signals a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block

RETURN VALUE
0S_NO_ERR The call was successful and the semaphore was signaled.

0S_SEM_OVF If the semaphore count exceeded its limit. In other words, you have
signalled the semaphore more often than you waited on it with either
0SSemAccept() or 0SSemPend().

OS_ERR_EVENT_TYPE If a pointer to a semaphore not passed.
0S_ERR_PEVENT_NULL If pevent is a null pointer.

LIBRARY
UCOS2.LIB

SEE ALSO
0SSemAccept, 0SSemCreate, 0SSemPend, 0SSemQuery

296 rabbit.com Dynamic C Functions

http://www.rabbit.com

0SSemQuery

INT8U 0SSemQuery(OS_EVENT * pevent, 0S_SEM_DATA * pdata);

DESCRIPTION
Obtains information about a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
pdata Pointer to a data structure that will hold information about the semaphore.

RETURN VALUE
0S_NO_ERR The call was successful and the message was sent.
0OS_ERR_EVENT_TYPE Attempting to obtain data from a non semaphore.
OS_ERR_PEVENT_NULL If the pevent parameter is a null pointer.

LIBRARY
UCOS2.LIB

SEE ALSO
0SSemAccept, 0SSemCreate, 0SSemPend, 0SSemPost

Dynamic C Functions rabbit.com

297

http://www.rabbit.com

0SSetTickPerSec

INT16U OSSetTickPerSec(INT16U TicksPerSec);

DESCRIPTION

Sets the amount of ticks per second (from 1 - 2048). Ticks per second defaults to 64. If this func-
tion is used, the #define OS_TICKS_PER_SEC needs to be changed so that the time delay
functions work correctly. Since this function uses integer division, the actual ticks per second
may be slightly different that the desired ticks per second.

PARAMETERS

TicksPerSec Unsigned 16-bit integer.

RETURN VALUE
The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSStart

OSStart

void OSStart(void);

DESCRIPTION

Starts the multitasking process, allowing uC/OS-11 to manage the tasks that have been created.
Before OSStart() is called, 0SInit() MUST have been called and at least one task
MUST have been created. This function calls 0SStartHighRdy which calls
OSTaskSwHook and sets OSRunning to TRUE.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt

298 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSStatinit

void OSStatinit(void);
DESCRIPTION
Determines CPU usage.

LIBRARY
UCOS2.LIB

OSTaskChangePrio

INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

DESCRIPTION
Allows a task's priority to be changed dynamically. Note that the new priority MUST be avail-
able.
PARAMETERS
oldprio The priority level to change from.
newprio The priority level to change to.

RETURN VALUE

0S_NO_ERR The call was successful.

OS_PRIO_INVALID The priority specified is higher that the maximum allowed (i.e. >
0S_LOWEST_PRIO).

0S_PRIO_EXIST The new priority already exist

OS_PRIO_ERR There is no task with the specified OLD priority (i.e. the OLD task

does not exist).

LIBRARY
UCOS2.LIB

Dynamic C Functions rabbit.com 299

http://www.rabbit.com

OSTaskCreate

INT8U OSTaskCreate(void (*task)(), void *pdata, INT16U stk _size,
INT8U prio);

DESCRIPTION

Creates a task to be managed by puC/OS-I1. Tasks can either be created prior to the start of mul-
titasking or by a running task. A task cannot be created by an ISR.

PARAMETERS
task Pointer to the task’s starting address.
pdata Pointer to a task’s initial parameters.
stk_size Number of bytes of the stack.
prior The task’s unique priority number.

RETURN VALUE

0S_NO_ERR The call was successful.

OS_PRIO_EXIT Task priority already exists (each task MUST have a unique priori-
ty).

OS_PRIO_INVALID The priority specified is higher than the maximum allowed (i.e. >

0S_LOWEST_PRIO).

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreateExt

300 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskCreateExt

INT8U OSTaskCreateExt(void (* task)(), void * pdata, INT8U prio,
INT16U id, INT16U stk size, void * pext, INT16U opt);

DESCRIPTION

Creates a task to be managed by puC/OS-I1. Tasks can either be created prior to the start of mul-
titasking or by a running task. A task cannot be created by an ISR. This function is similar to
OSTaskCreate () except that it allows additional information about a task to be specified.

PARAMETERS

task Pointer to task’s code.

pdata Pointer to optional data area; used to pass parameters to the task at start of
execution.

prio The task’s unique priority number; the lower the number the higher the pri-
ority.

id The task’s identification number (0...65535).

stk_size Size of the stack in number of elements. If OS_STK is set to INT8U,
stk_size corresponds to the number of bytes available. If 0S_STK is
setto INT16U, stk_size contains the number of 16-bit entries avail-
able. Finally, if OS_STK s setto INT32U, stk_size contains the num-
ber of 32-bit entries available on the stack.

pext Pointer to a user-supplied Task Control Block (TCB) extension.

opt The lower 8 bits are reserved by uC/OS-I11. The upper 8 bits control appli-
cation-specific options. Select an option by setting the corresponding
bit(s).

RETURN VALUE
0S_NO_ERR The call was successful.
OS_PRIO_EXIT Task priority already exists (each task MUST have a unique priori-
ty).
0S_PRIO_INVALID The priority specified is higher than the maximum allowed

(i.e.>0S_LOWEST_PRIO).

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate

Dynamic C Functions rabbit.com 301

http://www.rabbit.com

OSTaskCreateHook

void OSTaskCreateHook(OS_TCB * ptcb);

DESCRIPTION

Called by uC/OS-11 whenever a task is created. This call-back function resides in
UCOS2.LIB and extends functionality during task creation by allowing additional informa-
tion to be passed to the kernel, anything associated with a task. This function can also be used
to trigger other hardware, such as an oscilloscope. Interrupts are disabled during this call, there-
fore, it is recommended that code be kept to a minimum.

PARAMETERS

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskDelHook

302 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskDel

INT8U OSTaskDel(INT8U prio);

DESCRIPTION

Deletes a task. The calling task can delete itself by passing either its own priority number or
0S_PRI0O_SELF if itdoesn’t know its priority number. The deleted task is returned to the dor-
mant state and can be re-activated by creating the deleted task again.

PARAMETERS
prio Task’s priority number.
RETURN VALUE

0S_NO_ERR The call was successful.
OS_TASK_DEL_IDLE Attempting to delete uC/OS-II's idle task.

OS_PRIO_INVALID The priority specified is higher than the maximum allowed (i.e. >
OS_LOWEST_PRI10) or, 0OS_PRI0O_SELF not specified.
0S_TASK_DEL_ERR The task to delete does not exist.
0OS_TASK_DEL_ISR Attempting to delete a task from an ISR.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDelReq

Dynamic C Functions rabbit.com 303

http://www.rabbit.com

OSTaskDelHook

void OSTaskDelHook(OS_TCB * ptcb);

DESCRIPTION

Called by uC/OS-11 whenever a task is deleted. This call-back function resides in
UCOS2.LIB. Interrupts are disabled during this call, therefore, it is recommended that code
be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreateHook

304 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskDelReq

INT8U OSTaskDelReq(INT8U prio);

DESCRIPTION

Notifies a task to delete itself. A well-behaved task is deleted when it regains control of the CPU
by calling OSTaskDelReq (OSTaskDelReq) and monitoring the return value.

PARAMETERS

prio The priority of the task that is being asked to delete itself.
0S_PRI0O_SELF is used when asking whether another task wants the
current task to be deleted.

RETURN VALUE
0OS_NO_ERR The task exists and the request has been registered.

0S_TASK_NOT_EXIST The task has been deleted. This allows the caller to know whether
the request has been executed.

0OS_TASK_DEL_IDLE If requesting to delete uC/OS-I1's idletask.
OS_PRIO_INVALID The priority specified is higher than the maximum allowed (i.e. >
OS_LOWEST_PRI10)or, 0S_PRIO_SELF is not specified.
0S_TASK_DEL_REQ A task (possibly another task) requested that the running task be de-
leted.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDel

Dynamic C Functions rabbit.com 305

http://www.rabbit.com

OSTaskldleHook

void OSTaskldleHook(void);

DESCRIPTION

This function is called by the idle task. This hook has been added to allow you to do such things
as STOP the CPU to conserve power. Interrupts are enabled during this call.

LIBRARY
UCOS2.LIB

OSTaskQuery

INT8U OSTaskQuery(INT8U prio, 0S_TCB * pdata);

DESCRIPTION
Obtains a copy of the requested task's task control block (TCB).

PARAMETERS
prio Priority number of the task.
pdata Pointer to task’s TCB.

RETURN VALUE

0S_NO_ERR The requested task is suspended.
OS_PRIO_INVALID The priority you specify is higher than the maximum allowed (i.e. >
OS_LOWEST_PRI10) or, 0OS_PRIO_SELF is not specified.
0S_PRIO_ERR The desired task has not been created.
LIBRARY
UCoS2.LIB

306 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskResume

INT8U OSTaskResume(INT8U prio);

DESCRIPTION
Resumes a suspended task. This is the only call that will remove an explicit task suspension.

PARAMETERS

prio The priority of the task to resume.

RETURN VALUE
0S_NO_ERR The requested task is resumed.

OS_PRIO_INVALID The priority specified is higher than the maximum allowed (i.e. >
OS_LOWEST_PRI10).

OS_TASK_NOT_SUSPENDED The task to resume has not been suspended.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskSuspend

OSTaskStatHook

void OSTaskStatHook(void);

DESCRIPTION

Called every second by uC/OS-II's statistics task. This function resides in UCOS2. L 1B and al-
lows an application to add functionality to the statistics task.

LIBRARY
UCOS2.LIB

Dynamic C Functions rabbit.com 307

http://www.rabbit.com

OSTaskStkChk

INT8U 0STaskStkChk(INT8U prio, 0S_STK DATA * pdata);

DESCRIPTION
Check the amount of free memory on the stack of the specified task.

PARAMETERS
prio The task’s priority.
pdata Pointer to a data structure of type OS_STK_DATA.

RETURN VALUE
0S_NO_ERR The call was successful.

OS_PRIO_INVALID The priority you specify is higher than the maximum allowed (i.e. >
OS_LOWEST_PRI10)or, 0S_PRI0O_SELF not specified.

OS_TASK_NOT_EXIST The desired task has not been created.

OS_TASK_OPT_ERR If OS_TASK_OPT_STK_CHK was NOT specified when the task
was created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreateExt

308 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskSuspend

INT8U 0OSTaskSuspend(INT8U prio);

DESCRIPTION

Suspends a task. The task can be the calling task if the priority passed to 0STaskSuspend ()
is the priority of the calling task or OS_PR10_SELF. This function should be used with great
care. If a task is suspended that is waiting for an event (i.e., a message, a semaphore, a queue...)
the task will be prevented from running when the event arrives.

PARAMETERS

prio The priority of the task to suspend.

RETURN VALUE
0S_NO_ERR
0S_TASK_SUS_IDLE
0S_PRIO_INVALID

0S_TASK_SUS_PRI0

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskResume

The requested task is suspended.
Attempting to suspend the idle task (not allowed).

The priority specified is higher than the maximum allowed (i.e. >
0OS_LOWEST_PRI10)or, 0S_PRIO_SELF is not specified.

The task to suspend does not exist.

Dynamic C Functions

rabbit.com

309

http://www.rabbit.com

OSTaskSwHook

void OSTaskSwHook(void);

DESCRIPTION

Called whenever a context switch happens. The task control block (TCB) for the task that is
ready to run is accessed via the global variable OSTCBH 1 ghRdy, and the TCB for the task that
is being switched out is accessed via the global variable OSTCBCur.

LIBRARY
UCOS2.LIB

OSTCBInitHook

void OSTCBInitHook(OS_TCB * ptch);

DESCRIPTION

This function is called by OSTCB Init () after setting up most of the task control block (TCB).
Interrupts may or may not be enabled during this call.

PARAMETER

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

310 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeDly

void OSTimeDly(INT16U ticks);

DESCRIPTION

Delays execution of the task for the specified number of clock ticks. No delay will result if
ticks is 0. If ticks is >0, then a context switch will result.

PARAMETERS

ticks Number of clock ticks to delay the task.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDIyHMSM, OSTimeDlyResume, OSTimeDlySec

Dynamic C Functions rabbit.com 311

http://www.rabbit.com

OSTimeDIyHMSM

INT8U OSTimeDIyHMSM(INT8U hours, INT8U minutes, INT8U seconds,
INT16U milli);

DESCRIPTION

Delays execution of the task until specified amount of time expires. This call allows the delay
to be specified in hours, minutes, seconds and milliseconds instead of ticks. The resolution on
the milliseconds depends on the tick rate. For example, a 10 ms delay is not possible if the ticker
interrupts every 100 ms. In this case, the delay would be set to 0. The actual delay is rounded to
the nearest tick.

PARAMETERS
hours Number of hours that the task will be delayed (max. is 255)
minutes Number of minutes (max. 59)
seconds Number of seconds (max. 59)
milli Number of milliseconds (max. 999)

RETURN VALUE
0S_NO_ERR Execution delay of task was successful
OS_TIME_INVALID_MINUTES Minutes parameter out of range
OS_TIME_INVALID_SECONDS Seconds parameter out of range
OS_TIME_INVALID_MS Milliseconds parameter out of range
OS_TIME_ZERO_DLY

LIBRARY
0S_TIME.C (Prior to DC 8:ucos2.lib)

SEE ALSO
OSTimeDly, OSTimeDlyResume, OSTimeDlySec

312 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeDlyResume

INT8U OSTimeDlyResume(INT8U prio);

DESCRIPTION

Resumes a task that has been delayed through a call to either OSTimeDly () or
OSTimeDlyHMSM(). Note that this function MUST NOT be called to resume a task that is
waiting for an event with timeout. This situation would make the task look like a timeout oc-
curred (unless this is the desired effect). Also, a task cannot be resumed that has called
OSTimeDlyHMSM() with a combined time that exceeds 65535 clock ticks. In other words, if
the clock tick runs at 100 Hz then, a delayed task will not be able to be resumed that called
OSTimeDIyHMSM(O, 10, 55, 350) or higher.

PARAMETERS

prio Priority of the task to resume.

RETURN VALUE
0S_NO_ERR Task has been resumed.

0S_PRIO_INVALID The priority you specify is higher than the maximum allowed (i.e. >
OS_LOWEST_PRI10).

OS_TIME_NOT_DLY Task is not waiting for time to expire.
0OS_TASK_NOT_EXIST The desired task has not been created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDly, OSTimeDIyHMSM, OSTimeDlySec

Dynamic C Functions rabbit.com 313

http://www.rabbit.com

OSTimeDlySec

INT8U OSTimeDlySec(INT16U seconds);

DESCRIPTION

Delays execution of the task until seconds expires. This is a low-overhead version of
OSTimeDlyHMSM for seconds only.

PARAMETERS
seconds The number of seconds to delay.
RETURN VALUE

0S_NO_ERR The call was successful.
OS_TIME_ZERO DLY A delay of zero seconds was requested.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume

314 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeGet

INT32U OSTimeGet(void);
DESCRIPTION
Obtain the current value of the 32-bit counter that keeps track of the number of clock ticks.

RETURN VALUE
The current value of OST ime.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeSet

OSTimeSet

void OSTimeSet(INT32U ticks);
DESCRIPTION
Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS

ticks The value to set OST ime to.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeGet

Dynamic C Functions rabbit.com 315

http://www.rabbit.com

OSTimeTick

void OSTimeTick(void);

DESCRIPTION

This function takes care of the processing necessary at the occurrence of each system tick. This
function is called from the BIOS timer interrupt ISR, but can also be called from a high priority
task. The user definable OSTimeTickHook() is called from this function and allows for
extra application specific processing to be performed at each tick. Since
OSTimeTickHook() is called during an interrupt, it should perform minimal processing as
it will directly affect interrupt latency.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeTickHook

OSTimeTickHook

void OSTimeTickHook(void);

DESCRIPTION

This function, as included with Dynamic C, is a stub that does nothing except return. It is called
every clock tick. Code in this function should be kept to a minimum as it will directly affect
interrupt latency. This function must preserve any registers it uses other than the ones that are
preserved at the beginning of the periodic interrupt (periodic_isr in VDRIVER.LIB),
and therefore should be written in assembly. At the time of this writing, the registers saved by
periodic_isr are: AFIPHL,DE and IX.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeTick

316 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSVersion

INT16U OSVersion(void);

DESCRIPTION

Returns the version number of uC/OS-I1. The returned value corresponds to uC/OS-1l's version
number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE
Version number multiplied by 100.

LIBRARY
UCOS2.LIB

outchrs

char outchrs(char c, int n, int (*putc) O);

DESCRIPTION
Use putc to output n times the character c.

PARAMETERS
c Character to output
n Number of times to output
putc Routine to output one character. The function pointed to by putc should

take a character argument.

RETURN VALUE
The character in parameter c.

LIBRARY
STDIO.LIB

SEE ALSO
outstr

Dynamic C Functions rabbit.com 317

http://www.rabbit.com

outstr

char * outstr(char * string, int (putc)();

DESCRIPTION
Output the string pointed to by string via calls to putc. putc should take a one-character
parameter.
PARAMETERS
string String to output
putc Routine to output one character. The function pointed to by putc should

take a character argument.

RETURN VALUE
Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO
outchrs

318 rabbit.com Dynamic C Functions

http://www.rabbit.com

paddr

unsigned long paddr(void * pointer);

DESCRIPTION

Determines the physical address of a logical pointer. This function is compatible with both
shared and separate 1&D space compile modes. Use caution when converting a pointer in the
xmem window, i.e., in the range OXE00O to OXFFFF, as this function will return the physical ad-
dress based on the XPC on entry.

PARAMETERS

pointer The pointer to convert.

RETURN VALUE

The physical address of the entity that the pointer is referencing.

LIBRARY
XMEM_LIB

SEE ALSO
paddrDS, paddrSS

Dynamic C Functions rabbit.com 319

http://www.rabbit.com

paddrDS

unsigned long paddrDS(void * pointer);

DESCRIPTION

Converts a "Data Segment" logical pointer into its physical address. This function assumes the
pointer points to static (excluding bbram) data, which eliminates some runtime testing as
compared with the more general function, paddr ().

paddrDS() will generate incorrect results if used for:

« addresses in the root code (that is, program code or constants)
bbram (only available in fast RAM compile mode)

stack (that is, auto variables)

* Xmem segments

PARAMETERS

pointer Logical static (non-bbram) data pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM_LIB

SEE ALSO
paddr, paddrSS

320 rabbit.com Dynamic C Functions

http://www.rabbit.com

paddrSS

unsigned long paddrSS(void * pointer);

DESCRIPTION

The paddrSS function is deprecated and has been replaced by a macro redefining it to simply
paddr. Refer to the paddr function help for usage information.

PARAMETERS

pointer The pointer to convert.

RETURN VALUE
The physical address of the entity that the pointer is referencing.

LIBRARY
XMEM.LI1B

SEE ALSO
paddr, paddrDS

Dynamic C Functions rabbit.com

321

http://www.rabbit.com

palloc

void * palloc(Pool_t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pFree () to avoid memory leaks.

Assembler code can call pal loc_fTast() instead.

PARAMETERS

p Pool handle structure, as previously passed to pool _init().

RETURN VALUE

Null: No free elements available
Otherwise, pointer to an element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pcalloc, pfree, phwm, pavail, palloc_Tfast, pxalloc,
pool link

322 rabbit.com Dynamic C Functions

http://www.rabbit.com

palloc_fast

xmem void * palloc_fast(Pool_t * p);

DESCRIPTION
Return next available free element from the given pool, which must be a root pool.

This is an assembler-only version of pal loc().
*** Do _not_ call this function from C. ***

palloc_fast does not perform any IPSET protection, parameter validation, or update the
high-water mark. pal loc_fast is a root function. The parameter must be passed in IX, and
the returned element address is in HL.

REGISTERS

Parameter in IX
Trashes F, BC, DE
Return value in HL, carry flag.

EXAMPLE

Id ix,my_pool

Icall palloc_fast

jr c,.no_free

; HL points to element

PARAMETERS

p Pool handle structure, as previously passed to pool _init(). Pass this
in IX.

RETURN VALUE
C flag set: no free elements were available.
C flag clear (NC): HL points to an element.

If the pool is not linked, your application can use this element provided it does not write more
than p->elsize bytes to it (this was the el size parameter passed to pool _init()). If
the pool is linked, you can write p->elsize-4 bytes to it.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pfree fast, pavail_ fast, palloc

Dynamic C Functions rabbit.com 323

http://www.rabbit.com

pavail

word pavail(Pool_t * p);

DESCRIPTION
Return the number of elements that are currently available for allocation.
PARAMETERS

p Pool handle structure, as previously passed to pool_init()or
pool_xinit().

RETURN VALUE
Number of elements available for allocation.

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool xinit, phwm, pnel

324 rabbit.com Dynamic C Functions

http://www.rabbit.com

pavail_ fast

xmem word pavail_fast(Pool_t * p);

DESCRIPTION
Return the number of elements that are currently available for allocation.

This is an assembler-only version of pavail ().

*** Do _not_ call this function from C. ***

REGISTERS

Parameter in IX
Trashes F, DE
Return value in HL, Z flag

EXAMPLE

Id ix,my_pool
Icall pavail_fast
; HL contains number of available elements

PARAMETERS

p Pool handle structure, as previously passed to pool_init()or
pool_xinit(). This must be provided in the IX register.

RETURN VALUE

Number of elements available for allocation. The return value is placed in HL. In addition, the
'Z' flag is set if there are no free elements.

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool xinit, phwm, pnel

Dynamic C Functions rabbit.com 325

http://www.rabbit.com

pcalloc

void * pcalloc(Pool _t * p);

DESCRIPTION
Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pFree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

p Pool handle structure, as previously passed to pool _init().

RETURN VALUE

Null: No free elements were available

Otherwise, pointer to an element. If the pool is not linked, your application must not write more
than p->elsize bytes to the element (this was the el size parameter passed to
pool_init()). The application can write up to (p—>e lsize-4) bytes to the element if the
pool is linked. (An element in root memory has 4 bytes of overhead when the pool is linked.)

LIBRARY
POOL.LIB

SEE ALSO
pool _init, palloc, pfree, phwm, pavail

326 rabbit.com Dynamic C Functions

http://www.rabbit.com

pFirst

void * pfirst(Pool_t * p);

DESCRIPTION

Get the first allocated element in a root pool. The pool MUST be set to being a linked pool us-
ing:

pool_link(p, <non-zero>)
Otherwise, the result is undefined.
PARAMETERS

p Pool handle structure, as previously passed to pool_init().

RETURN VALUE

Null: There are no allocated elements
Otherwise, pointer to first (i.e., oldest) allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool link, palloc, pfree, plast, pnext, pprev

Dynamic C Functions rabbit.com 327

http://www.rabbit.com

pfirst_fast

xmem void * pfirst_fast(Pool_t * p);

DESCRIPTION

Get the first allocated element in a root pool. The pool MUST be set to being a linked pool by
using:

pool_link(p, <non-zero>);
Otherwise the results are undefined.
This is an assembler-only version of pFirst().

*** Do _not_ call this function from C. ***

REGISTERS

Parameter in 1X
Trashes F, DE
Return value in HL, carry flag

EXAMPLE

Id ix,my_pool

Icall pfirst_fast

jr c,.no_elems

; HL points to first element

PARAMETERS

p Pool handle structure, as previously passed to pool_init(). Pass this
in the IX register.

RETURN VALUE

C flag set, HL=0: There are no allocated elements.
C flag clear (NC): HL points to first element.

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool _link, pfirst, pnext_ fast

328 rabbit.com Dynamic C Functions

http://www.rabbit.com

pfree

void pfree(Pool_t * p, void * e);

DESCRIPTION

Free an element that was obtained via pal loc (). Note: if you free an element that was not
allocated from this pool, or was already free, or was outside the pool, then your application will
crash! You can detect most of these programming errors by defining the following symbols be-
fore #use pool._lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
p Pool handle structure, as previously passed to palloc().

e Element to free, which was returned from palloc().

RETURN VALUE
None

LIBRARY
POOL.LIB

SEE ALSO
pool _init, palloc, pcalloc, phwm, pavail

Dynamic C Functions rabbit.com

329

http://www.rabbit.com

pfree_fast

xmem void pfree_fast(Pool_t * p, void * e);

DESCRIPTION
Free an element that was previously obtained via pal loc().

This is an assembler-only version of pfree().
*** Do _not_ call this function from C. ***

pfree_fast doesnot perform any IPSET protection or parameter validation. pFree_fast
is a xmem function. The parameters must be passed in machine registers.

REGISTERS

Parameters in 1X, DE respectively
Trashes BC, DE, HL

EXAMPLE
Id ix,my_pool
Id de, (element_addr)
Icall pfree_fast
PARAMETERS
p Pool handle structure, as previously passed to pool_alloc()or
palloc_fast. This must be in the IX register.
e Element to free, which was returned from pal loc (). This must be in the

DE register.

RETURN VALUE
None

LIBRARY
POOL.LIB

SEE ALSO
pool _init, palloc_fast, pavail_fast, pxfree_fast

330 rabbit.com Dynamic C Functions

http://www.rabbit.com

phwm

word phwm(Pool_t * p);

DESCRIPTION

Return the largest number of elements ever simultaneously allocated from the given pool, i.e.,
the pool high water mark.

You can use this function to help size a pool, since it may be difficult to determine the optimum
number of elements without running a trial program.

PARAMETERS

p Pool handle structure, as previously passed to pool _init() or
pool_xinit().

RETURN VALUE
Maximum number of elements ever allocated.

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool xinit, pavail

Dynamic C Functions rabbit.com 331

http://www.rabbit.com

pktXclose

void pktXclose(void); /* X is A-F */

DESCRIPTION

Disables serial port X. The functions pktEclose() and pktFclose () may be used with
the Rabbit 3000 and Rabbit 4000.

LIBRARY
PACKET.LIB

pktXgetErrors

char pktXgetErrors(void); /* X is A-F */

DESCRIPTION

Gets a bit field with flags set for any errors that occurred on port X. These flags are then cleared,
so that a particular error will only cause the flag to be set once.

The functions pktEgetErrors() and pktFgetErrors() may be used with the
Rabbit 3000 and Rabbit 4000.

RETURN VALUE
A bit field with flags for various errors. The errors along with their bit masks are as follows:

PKT_BUFFEROVERFLOW 0x01

PKT_RXOVERRUN 0x02
PKT_PARITYERROR 0x04
PKT_NOBUFFER 0x08
LIBRARY
PACKET.LIB

332 rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXinitBuffers

int pktXinitBuffers(int buf_count, int buf_size); /* X is A-F */

DESCRIPTION

Allocates extended memory for channel X receive buffers. This function should not be called
more than once in a program. The total memory allocated is buf _count*(buf_size + 2) bytes.

The functions pktEinitBuffers() and pktFinitBuffers() may be used with the
Rabbit 3000 and Rabbit 4000.

PARAMETERS
buf_count The number of buffers to allocate. Each buffer can store one received pack-
et. Increasing this number allows for more pending packets and a larger la-
tency time before packets must be processed by the user's program.
buf_size The number of bytes each buffer can accommodate. This should be set to

the size of the largest possible packet that can be expected.

RETURN VALUE

1: Success, extended memory was allocated.
O: Failure, no memory allocated, the packet channel cannot be used.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com 333

http://www.rabbit.com

pktXopen

int pktXopen(long baud, int mode, char options, int (*test_packet)()

Y; /* X is A-F */

DESCRIPTION

Opens serial port X. The functions pktEopen() and pktFopen() may be used with the
Rabbit 3000 and Rabbit 4000.

The packet driver is meant to be used with a variety of transceiver hardware, so some functions
must be defined by the user. Each of these functions, listed below, take no arguments and return
nothing.

o pktXinit() - Initializes the communication hardware. Called inside pktXopen (). This
function may be written in C. It will only be called once each time the packet driver is opened,
so speed is not a major concern. This is where 1/O pins should be configured and any other
setup should be performed.

* pktXrx() - Sets the hardware to receive data. This function must be written in assembly.
Any registers besides the 8-bit accumulator A must be preserved first, and restored before
returning. This function is called when the driver switches from transmit to receive mode
once there are no packets to send. This function is necessary for half-duplex connections and
other types of shared bus schemes so that the transmitter can be disabled, allowing other
nodes to use the lines.

o pktXtx() - Sets the hardware to transmit data. This function must be written in assembly.
The same rules for register usage as for pktXrx() apply. This function is called whenever
the driver switches from receive to transmit mode in response to an additional packet or
packets being available for sending. A typical use of this function is to enable any necessary
transmitter hardware.

See the sample program Samples/PKTDEMO.C for an example of how to write these user-
supplied functions. See technical note TN213 “Rabbit Serial Port Software” for more informa-
tion on the packet driver.

334

rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXopen (cont’d)

PARAMETERS
baud

mode

options

test_ packet

RETURN VALUE

Bits per second of data transfer: minimum is 2400.

Type of packet scheme used, the options are:

= PKT_GAPMODE
= PKT_9BITMODE
= PKT_CHARMODE

Further specification for the packet scheme. The value of this depends on
the mode used:
* gap mode - minimum gap size (in byte times)
* 9-bit mode - type of 9-bit protocol
e PKT_RABBITSTARTBYTE
e PKT_LOWSTARTBYTE
e PKT_HIGHSTARTBYTE
* char mode - character marking start of packet

Pointer to a function that tests for completeness of a packet. The function
should return 1 if the packet is complete, or O if more data should be read
in. For gap mode the test function is not used and should be set to null.

1: The Rabbit’s bps setting is within 5% of the input baud.
0: The Rabbit’s bps setting differs by more than 5% of the input baud

LIBRARY
PACKET.LIB

Dynamic C Functions

rabbit.com

335

http://www.rabbit.com

pktXreceive

int pktXreceive(void * buffer, int buffer_size); /* X is A-F */

DESCRIPTION
Gets a received packet, if there is one, from serial port X.

The functions pktEreceive() and pktFreceive() may be used with the Rabbit 3000
and Rabbit 4000.
PARAMETERS

buffer A buffer for the packet to be written into.

buffer_size Length of the data buffer.

RETURN VALUE

>0: Number of bytes in the successfully received packet.
0: No new packet has been received.

-1: The packet is too large for the given buffer.

-2: A needed test_packet function is not defined.

LIBRARY
PACKET.LIB

336 rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXsend

int pktXsend(void *send_buffer, int buffer_length, char delay);
/* X is A-F */

DESCRIPTION

Initiates the sending of a packet of data using serial port X. This function will always return im-
mediately. If there is already a packet being transmitted, this call will return 0 and the packet
will not be transmitted, otherwise it will return 1.

pktXsending() checks if the packet is done transmitting. The system will be using the buf-
fer until then.

The functions pktEsend () and pktFsend () may be used with the Rabbit 3000 and
Rabbit 4000.

PARAMETERS
send_buffer The data to be sent
buffer_length Length of the data buffer to transmit

delay The number of byte times to delay before sending the data (0-255) This
is used to implement protocol-specific delays between packets

RETURN VALUE

1: The packet is going to be transmitted.
0: There is already a packet transmitting, and the new packet was refused.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com 337

http://www.rabbit.com

pktXsending

int pktXsending(void); /* X is A-F */

DESCRIPTION
Tests if a packet is currently being sent on serial port X. If pktXsending() returns true, the
transmitter is busy and cannot accept another packet.

The functions pktEsending() and pktFsending() may be used with the Rabbit 3000
and Rabbit 4000.

RETURN VALUE

1: A packet is being transmitted.
0: Port X is idle, ready for a new packet.

LIBRARY
PACKET.LIB

pktXsetParity

void pktXsetParity(char mode); /* X is A-F */

DESCRIPTION
Configures parity generation and checking. Can also configure for 2 stop bits.

The functions pktEsetParity() and pktFsetParity() may be used with the
Rabbit 3000 and Rabbit 4000.

PARAMETERS
mode Code for mode of parity bit:
e PKT_NOPARITY - no parity bit (8N1 format, default)
o PKT_OPARITY - odd parity (801 format)
e PKT_EPARITY - even parity (8E1 format)
o PKT_TWOSTOP - an extra stop bit (8N2 format)
LIBRARY
PACKET.LIB

338 rabbit.com Dynamic C Functions

http://www.rabbit.com

plast

void * plast(Pool_t * p);

DESCRIPTION

Get the last allocated element in a root pool. The pool MUST be set to being a linked pool using
pool _link(p, <non-zero>); otherwise, the results are undefined.

PARAMETERS

p Pool handle structure, as previously passed to pool_init().

RETURN VALUE

nul I: There are no allocated elements
Tnul I; Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool link, palloc, pfree, pfirst

Dynamic C Functions rabbit.com

339

http://www.rabbit.com

plast_fast

xmem void * plast_fast(Pool_t * p);

DESCRIPTION
Get the last allocated element in a root pool. The pool MUST be set to being a linked pool using
pool_link(p, <non-zero>) ; otherwise, the results are undefined.
This is an assembler-only version of plast().

*** Do _not_ call this function from C. ***

Registers
Parameter in IX
Trashes F, DE
Return value in HL, carry flag

Example
Id ix,my_pool
Icall plast_fast
Jjr c,.no_elems
; HL points to last element

PARAMETERS

p Pool handle structure, as previously passed to pool _init(). Pass this
in IX register.

RETURN VALUE

C flag set, HL=0: there are no allocated elements
C flag clear (NC): HL points to last element.

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool link, plast, pprev_fast

340 rabbit.com Dynamic C Functions

http://www.rabbit.com

pmovebetween

void * pmovebetween(Pool_t * p, void * e, void * d, void * T);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it between allocated elements “d” and
“f.” “Atomically” means that the POOL__ IPSET level is used to lock out other CPU contexts
from altering the pool while this operation is in progress. In addition, “d” and “f” are checked
to ensure that the following conditions still hold:

pprev(p,) ==

and
pnext(p, d) ==

in other words, “f” follows “d.” This is useful since your application may have determined “d”
and “f” some time ago, but in the meantime some other task may have re-ordered the queue or
deleted these elements. In this case, the return value will be null. Your application should then
re-evaluate the appropriate queue elements and retry this function.

The pool MUST be set to being a linked pool by using:
pool_ link(p, <non-zero>)

Otherwise the results are undefined.

PARAMETERS
p Pool handle structure, as previously passed to pool_init().

e Address of element to move, obtained by, e.g., plast(). This must be an
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element is implied (i.e., whatever plast() would re-
turn). If there are no elements at all, or this parameter does not point to a
valid allocated element, then the results are undefined (and probably cata-
strophic).

Ife == dore == T, then there is no action except to check whether
“f” follows “d.” This parameter may refer to an unlinked (but allocated) el-
ement.

d First reference element. The element “e” will be inserted after this element.
On entry, it must be true that pnext(p, d) == T. Otherwise, null is
returned. If this parameter is null, then “f” must point to the first element
in the list, and “e” is inserted at the start of the list.

Dynamic C Functions rabbit.com 341

http://www.rabbit.com

pmovebetween (cont’d)

L Second reference element. The element “e” will be inserted before this el-
ement. On entry, it must be true that pprev(p, f) == d. Otherwise,
null is returned. If this parameter is null, then “d” must point to the last el-
ement in the list, and “e” is inserted at the end of the list.

Note: If both “d” and “f” are null, then it must be true that there are no allocated ele-
ments in the linked list, and the element “e” is added as the only element in the list. This
proviso only obtains when the element “e” is initially allocated from an empty pool
with:

pool_link(p, POOL_LINKED_BY_APP)

The allocated element is not in the linked list of allocated elements.

RETURN VALUE
Returns the parameter value “e,” unless “e” was null; in which case the value of plast(), if
called at function entry, would be returned. If the initial conditions for “d” and “f” do not hold,
then null is returned with no further action.

EXAMPLES

void * d, * e, * T;

e = plast(p); // element to move
T = pnext(p, d = pfirst(p)); // d, fare first 2 elements
pmovebetween(p, e, d, T);
LIBRARY
POOL.LIB
SEE ALSO

pool _init, pool link, plast, pfirst, pnext, pprev, preorder

342 rabbit.com Dynamic C Functions

http://www.rabbit.com

pmovebetween fast

void * pmovebetween_fast(Pool_t *p, void *e, void *d, void *f);

DESCRIPTION

See description under pmovebetween (). This is an assembler- callable version (do not call
from C). It does not issue IPSET protection or check parameters.

REGISTERS: Parameters in IX, DE, BC, HL respectively
Trashes AF, BC, DE, BC', DE', HL'

Return value in HL, carry flag.

PARAMETERS
p Pool handle structure, as previously passed to pool_init().Passin IX
register
e Address of element to move. Pass in DE register.
d The first reference element. Pass in BC register.
T The second reference element. Pass in HL register.

RETURN VALUE
In HL. Either set to “e” parameter, or 0. The carry flag is set if HL==0; otherwise it is clear.

LIBRARY
POOL.LIB

SEE ALSO
pmovebetween

Dynamic C Functions rabbit.com

343

http://www.rabbit.com

pnel

word pnel(Pool_t * p);

DESCRIPTION

Return the number of elements that are in the pool, both free and used. This includes elements
appended using pool _append() etc.

PARAMETERS

p Pool handle structure, as previously passed to pool _init() or
pool_xinit().

RETURN VALUE
Number of elements total

LIBRARY
POOL.LIB

SEE ALSO

pool _init, pool xinit, pavail

344

rabbit.com

Dynamic C Functions

http://www.rabbit.com

pnext

void * pnext(Pool_t * p, void * e);

DESCRIPTION

Get the next allocated element in a root pool. The pool MUST be set to being a linked pool using
pool_link(p, <non-zero>); otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

void * e;
Pool_t * p;
for (e = pfirst(p); e; e = pnext(p, €)) {

}
PARAMETERS
p Pool handle structure, as previously passed to pool_init().
e Previous element address, obtained by, e.g., pFirst(). This must be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pfree(): once the element is deleted, it is no longer valid to pass its ad-
dress to this function.

If this parameter is null, then the result is the same as pFirst(). Thisen-
sures the invariant pnext(p, pprev(p, €)) == e.

RETURN VALUE

nul I: There are no more elements
I'nul I: Pointer to next allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool_link, palloc, pfree, pfirst, pprev

Dynamic C Functions rabbit.com 345

http://www.rabbit.com

pnext_fast

xmem void * pnext_fast(Pool_t * p, void * e);

DESCRIPTION
Get the next allocated element in a root pool. The pool MUST be set to being a linked pool using
pool _link(p, <non-zero>); otherwise, the results are undefined.
This is an assembler-only version of pnext().
*** Do _not_ call this function from C. ***
Registers

Parameters in IX, DE respectively
Trashes F, DE
Return value in HL, carry flag

Example

Id ix,my_pool

Id de, (current_element)

Icall pnext_fast

Jjr c,.no_more_elems

; HL points to the next allocated element

PARAMETERS
p Pool handle structure, as previously passed to pool_init(). Pass this
in 1X register.
e Current element, address in DE register. See pnext() for a full descrip-
tion.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL points to next element

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool_link, palloc, pfree, pfirst, pprev

346 rabbit.com Dynamic C Functions

http://www.rabbit.com

poly

float poly(float x, int n, float c[]);

DESCRIPTION

Computes polynomial value by Horner's method. For example, for the fourth-order polynomial
10x* — 3x2 + 4x + 6, n would be 4 and the coefficients would be

c[4] = 10.0
c[3] = 0.0
c[2] = -3.0
c[1] = 4.0
c[0] = 6.0
PARAMETERS

X Variable of the polynomial.

n The order of the polynomial

c Array containing the coefficients of each power of x.

RETURN VALUE
The polynomial value.

LIBRARY
MATH.LIB

Dynamic C Functions rabbit.com 347

http://www.rabbit.com

pool append

int pool_append(Pool_t * p, void * base, word nel);

DESCRIPTION

Add another root memory area to an existing pool. It is assumed that the element size is the same
as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize bytes long (where elsize is the element size of the existing pool, and nel is
the parameter to this function).

The total pool size must obey the constraints documented with pool_init().

PARAMETERS
p Pool handle structure, as previously passed to pool _init().
base Base address of the root data memory area to append to this pool. This must
be nel*elsize bytes long. Typically, this would be a static (global) ar-
ray.
nel Number of elements in the memory area.The sum of nel and the current

number of elements must not exceed 32767.

RETURN VALUE

Currently always zero. If you define the macro POOL__DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf() messages.

LIBRARY
POOL.LIB

SEE ALSO
pool_init

348 rabbit.com Dynamic C Functions

http://www.rabbit.com

pool iInit

int pool_init(Pool_t * p, void * base, word nel, word elsize);

DESCRIPTION

Initialize a root memory pool. A pool is a linked list of fixed-size blocks taken from a contigu-
ous area. You can use pools instead of mal loc () when fixed-size blocks are all that is needed.
You can have several pools, with different size blocks. Using memory pools is very efficient
compared with more general functions like mal loc (). (There is currently nomal loc() im-
plementation with Dynamic C.)

This function should only be called once, at program startup time, for each pool to be used.

Note: the product of nel and el size must be less than 65535 (however, this will usually be
limited further by the actual amount of root memory available).

After calling this function, your application must not change any of the fields in the Pool_t

structure.
PARAMETERS

p Pool handle structure. This is allocated by the caller, but this function will
initialize it. Normally, this would be allocated in static memory by declar-
ing a global variable of type Pool _t.

base Base address of the root data memory area to be managed in this pool. This
must be nel*elsize bytes long. Typically, this would be a static (glob-
al) array.

nel Number of elements in the memory area. 1..32767

elsize Size of each element in the memory area. 2..32767

RETURN VALUE

Currently always zero. If you define the macro POOL__ DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf() messages.

LIBRARY
POOL.LIB

SEE ALSO
pool xinit, palloc, pcalloc, pfree, phwm, pavail

Dynamic C Functions rabbit.com 349

http://www.rabbit.com

pool link

int pool_link(Pool_t * p, int link);

DESCRIPTION
Tell the specified pool to maintain a doubly-linked list of allocated elements.

This function should only be called when the pool is completely free; i.e.,

pavail() == pnel()

PARAMETERS
p Pool handle structure, as previously passed to pool _init() or
pool_xinit().
link Must be one of the following:

* POOL_NOT_LINKED (0): the pool is not to be linked.

e POOL_LINKED_AUTO (1): the pool is linked, and newly allocated el-
ements are always added at the end of the list.

* POOL_LINKED_BY_APP (2): the pool is linked, but newly allocated
elements are not added to the list. The application must call

preorder() or pmovebetween() to insert the element. This op-
tion is only available for root pools.

WARNING: if you set the POOL_L INKED_BY_APP option, then the al-
located element must NOT be passed to any other pool API function except
for pFree(), preorder () (as the “e” parameter) or
pmovebetween() (as the “e” parameter). After calling preorder ()
or pmovebetween(), then it is safe to pass this element to all appropri-
ate functions.

RETURN VALUE

Currently always zero. If you define the macro POOL__ DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf() messages.

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool xinit, pavail

350 rabbit.com Dynamic C Functions

http://www.rabbit.com

pool xappend

int pool_xappend(Pool_t * p, long base, word nel);

DESCRIPTION

Add another xmem memory area to an existing pool. It is assumed that the element size is the
same as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be

nel*elsize bytes long (where el size is the element size of the existing pool, and nel is
the parameter to this function).

The total pool size must obey the constraints documented with pool_xinit().

PARAMETERS
p Pool handle structure, as previously passed to pool_xinit().
base Base address of the xmem data memory area to append to this pool. This
must be nel*elsize bytes long. Typically, this would be an area allo-
cated using xalloc().
nel Number of elements in the memory area. 1..65534. The sum of this and the

current number of elements must not exceed 65535.

RETURN VALUE

Currently always zero. If you define the macro POOL__DEBUG, then parameters are checked. If

the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf() messages.

LIBRARY
POOL.LIB

SEE ALSO
pool xinit

Dynamic C Functions rabbit.com 351

http://www.rabbit.com

pool Xxinit

int pool_xinit(Pool_t * p, long base, word nel, word elsize);

DESCRIPTION

Initialize an xmem memory pool. A pool is a linked list of fixed-size blocks taken from a con-
tiguous area. You can use pools instead of malloc() when fixed-size blocks are all that is needed.
You can have several pools, with different size blocks. Using memory pools is very efficient
compared with more general functions like malloc(). (There is currently no malloc() implemen-
tation with Dynamic C.)

This function should only be called once, at program startup time, for each pool to be used.

After calling this function, your application must not change any of the fields in the Pool_t

structure.
PARAMETERS

p Pool handle structure. This is allocated by the caller, but this function will
initialize it. Normally, this would be allocated in static memory by declar-
ing a global variable of type Pool_t.

base Base address of the xmem data memory area to be managed in this pool.
This must be nel*elsize bytes long. Typically, this would be an area
allocated by xal loc () when your program starts.

nel Number of elements in the memory area. 1..65535

elsize Size of each element in the memory area. 4..65535

RETURN VALUE

Currently always zero. If you define the macro POOL_ DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf() messages.

LIBRARY
POOL.LIB

SEE ALSO
pool_init, pxalloc, pxcalloc, pxfree, phwm, pavail

352 rabbit.com Dynamic C Functions

http://www.rabbit.com

pow

float pow(float x, float y);

DESCRIPTION
Raises x to the yth power.

PARAMETERS
X Value to be raised
y Exponent

RETURN VALUE
X to the yth power

LIBRARY
MATH.LIB

SEE ALSO
exp, powlO, sqgrt

powlO

float powl0(float x);
DESCRIPTION
10 to the power of x.
PARAMETERS
X Exponent

RETURN VALUE
10 raised to power X

LIBRARY
MATH.LIB

SEE ALSO
pow, exp, sqrt

Dynamic C Functions rabbit.com

353

http://www.rabbit.com

powerspectrum

void powerspectrum(int * x, int N, * int blockexp);

DESCRIPTION
Computes the power spectrum from a complex spectrum according to

Power[k] = (Re X[KI)? + (Im X[K])?

The N-point power spectrum replaces the N-point complex spectrum. The power of each com-
plex spectral component is computed as a 32-bit fraction. Its more significant 16-bits replace
the imaginary part of the component; its less significant 16-bits replace the real part.

If the complex input spectrum is a positive-frequency spectrum computed by FFtreal (), the
imaginary part of the X[0] term (stored x[1]) will contain the real part of the fmax term and
will affect the calculation of the dc power. If the dc power or the fmax power is important, the
fmax term should be retrieved from x[1] and x[1] set to zero before calling
powerspectrum().

The power of the kth term can be retrieved via
PLk]=*(1ong*)&x[2k]*2"blockexp.

The value of blockexp is first doubled to reflect the squaring operation applied to all ele-
ments in array X. Then it is further increased by 1 to reflect an inherent division by two that oc-
curs during the squaring operation.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array X.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO
fftcplx, ffteplxinv, fftreal, fftrealinv, hanncplx, hannreal

354 rabbit.com Dynamic C Functions

http://www.rabbit.com

pprev

void * pprev(Pool_t * p, void * e);

DESCRIPTION

Get the previously allocated element in a root pool. The pool MUST be set to being a linked
pool using pool _link(p, <non-zero>); otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

void * e;
Pool_t * p;

for (e = plast(p); e; e = pprev(p, e)) {

}
PARAMETERS
p Pool handle structure, as previously passed to pool _init().
e Previous element address, obtained by, e.g., plast (). This must be an al-

located element in the given pool; otherwise, the results are undefined. Be
careful when iterating through a list and deleting elements using
pfree(): once the element is deleted, it is no longer valid to pass its ad-
dress to this function. If this parameter is null, then the result is the same
as plast(). This ensures the invariant

pprev(p, pnext(p, e)) ==

RETURN VALUE

nul I: There are no more elements
I'nul I: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool link, palloc, pfree, plast, pnext

Dynamic C Functions rabbit.com 355

http://www.rabbit.com

pprev_fast

xmem void * pprev_fast(Pool_t * p, void * e);

DESCRIPTION
Get the previous allocated element in a root pool. The pool MUST be set to being a linked pool
by using pool _link(p, <non-zero>); otherwise, the results are undefined.
This is an assembler-only version of pprev().
*** Do _not_ call this function from C. ***
Registers

Parameters in IX, DE respectively
Trashes F, DE
Return value in HL, carry flag

Example

Id ix,my_pool

Id de, (current_element)

Icall pprev_fast

Jjr c,.no_more_elems

; HL points to previously allocated element

PARAMETERS
p Pool handle structure, as previously passed to pool_init(). Pass this
in 1X register.
e Current element, address in DE register. See pprev () for fuller descrip-
tion.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL points to previous element

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool_link, palloc, pprev

356 rabbit.com Dynamic C Functions

http://www.rabbit.com

pputlast

void * pputlast(Pool_t * p, void * e);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it at the end of the allocated list. “Atom-
ically” means that the POOL__ I PSET level is used to lock out other CPU contexts from altering
the pool while this operation is in progress.

This is equivalent to:
pmovebetween(p, e, plast(p), NULL);

but is considerably faster.

A common use for this function is to insert an element allocated when the
POOL_LINKED_BY_APP attribute is set for the pool, at the end of the allocated list. This is
useful when, say, an ISR allocates and uses a buffer without placing it on the allocated list. Only
when the buffer is complete does the ISR use this function to place it on the queue for reading
by the main application.

The pool MUST be set to being a linked pool by using:
pool_link(p, <non-zero>);

otherwise the results are undefined.

PARAMETERS
p Pointer to pool handle structure, as previously passed to pool _init().
e Address of element to move. If NULL, then this function behaves as

plast().

RETURN VALUE
Same as the “e” parameter, unless “e” is NULL in which case the existing last element is re-
turned as per plast().

LIBRARY
POOL.LIB

SEE ALSO
pmovebetween, pool link

Dynamic C Functions rabbit.com 357

http://www.rabbit.com

pputlast_ fast

void * pputlast_fast(Pool_t * p, void * e);

DESCRIPTION
See description under pputlast(). This is an assembler-callable version (do not call from
C). It does not issue IPSET protection or check parameters.
Registers:

Parameters in IX (“p”) and DE (“e”)
Trashes F, DE, BC
Return value in HL

PARAMETERS
p Pointer to pool handle structure, as previously passed to pool _init().
Pass in 1X register
e Address of element to move. Pass in DE register. If NULL, then this func-

tion behaves as plast_fast().

RETURN VALUE
In HL. Same as the “e” parameter, unless “e” is NULL in which case the existing last element
is returned as per plast_fast().

LIBRARY
POOL.LIB

SEE ALSO
pmovebetween, pool_link

premain

void premain(void);

DESCRIPTION

Dynamic C calls premain to start initialization functions such as Vd Init. The final thing
premain does is call main. This function should never be called by an application program.
It is included here for informational purposes only.

LIBRARY
PROGRAM.LIB

358 rabbit.com Dynamic C Functions

http://www.rabbit.com

preorder

void * preorder(Pool_t *p, void *e, void *where, word options);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it before or after element “where.”
“Atomically” means that the POOL__ IPSET level is used to lock out other CPU contexts from
altering the pool while this operation is in progress.

The pool MUST be set to being a linked pool by using:

pool_link(p, <non-zero>)

Otherwise the results are undefined.

PARAMETERS

p

e

where

options

Pool handle structure, as previously passed to pool_init().

Address of element to move, obtained by e.g., plast(). This must be an
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element is implied (i.e., whatever plast() would re-

turn). If there are no elements at all, or this parameter does not point to a
valid allocated element, then the results are undefined (and probably cata-
strophic).

The reference element. The element “e” will be inserted before or after this
element, depending on the options parameter. If e==where, then there is
no action. If this parameter is null, then the reference element is assumed
to be the first element (i.e., whatever pFirst() would return). If there

are no elements at all, or this parameter does not point to a valid allocated
element, then the results are undefined (and probably catastrophic).

Option flags. Currently, the only options are:

POOL_INSERT_BEFORE
POOL_INSERT_AFTER

which specifies whether “e” is to be inserted before or after “where.”

Dynamic C Functions

rabbit.com

359

http://www.rabbit.com

preorder (cont’d)

RETURN VALUE

Returns the parameter value “e” unless “e” was null, in which case the value of plast(),
when called at function entry, would be returned.

IMPORTANT: If null is returned, that means that some other task (context, or
ISR) modified the linked list while this operation was in progress. In this case, the
application should call this function again with the same parameters, since this
operation will NOT have completed. This would be a rare occurrence; however,
multitasking applications should handle this case correctly.

EXAMPLES
void * r;
void * s;
s = pnext(p, pfirst(p); // sis second element
r = plast(p); /7 ris last element

preorder(p, s, r, POOL_INSERT_AFTER);

// Ifsl=r, then s will become the new last element. You can use null
// parameters to perform the common case of moving the last element
// to the head of the list:

preorder(p, NULL, NULL, POOL_INSERT_BEFORE);

// which is identical to:.
preorder(p, plast(p), pfirst(p), POOL_INSERT_BEFORE);

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pool _link, plast, pfirst, pnext, pprev, pmovebetween

360 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf

int printf(char *fmt, ...);

DESCRIPTION

This function is similar to sprintf(), but outputs the formatted string to the Stdio window.
Prior to Dynamic C 7.25, pr intf() would work only with the controller in program mode
connected to a PC running Dynamic C. As of Dynamic C 7.25, it is possible to redirect
printf() output to a serial port during run mode by defining a macro to specify the serial
port. See the sample program SAMPLES/STDIO_SERIAL . C for more information.

See below for the complete list of Dynamic C Conversion Specifiers.
The user should make sure that:
« there are enough arguments after fmt to fill in the format parameters in the format string

* the types of arguments after Fmt match the conversion specifiers in fmt

Themacro STDIO_DISABLE_FLOATS can be defined if it is not necessary to format floating
point numbers. If this macro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

The macro STDI10_ENABLE_LONG_STRINGS can be defined if it is necessary to print
strings to the Stdio window that are longer than the default of 127 bytes. Without defining this
macro, such strings are truncated. The drawback of defining this macro is that if it is defined in
a multi-tasking application where more than one task is utilizing printf and at least one of the
tasks is printing strings longer than 127 bytes, the user must ensure that calls to printf are seri-
alized via a semaphore or similar means. If calls to printf are not serialized under these condi-
tions, printf output from the different tasks may be interleaved in the Stdio window.

Note: this function is task reentrant and it has a 128 byte buffer.
PARAMETERS
mt String to be formatted.

- Format arguments.

RETURN VALUE
Number of characters written

LIBRARY
STDIO.LIB

SEE ALSO
sprintf

Dynamic C Functions rabbit.com 361

http://www.rabbit.com

printf (cont’d)

DYNAMIC C CONVERSION SPECIFIERS
%s - string
%lIs - null terminated string in xmem
%(d - signed decimal
%u - unsigned decimal
%f - float
%e - exponential
%qg - floating point, same as %f or %e depending upon value and precision
%p - pointer
%Ip - pointer
%X - hexadecimal, result in lowercase
%X - hexadecimal, same as %x but result in uppercase
%c - single character

%s - string
The precision specifier (the number between “%” and “s™) determines the maximum number
of characters to display.

zw

mainil o

Irintf(">%s<\n","a"];

printf(">%.3s<\n", "a")
printf("x%3s<in", "am");
printf("x%-3s<\ 0", "a")

printf irr#**#**w**w**w**w*ﬂ‘ n":l : rabods

printf(">%=s<hn™, "abod™)
printf ("% .33<vn", Tabed™) 2
printf (">%3s<hn", Tahod™) ;
printf ("x%-33<vn", Tabod™) 2

|Eﬂh........ﬂh----i

As shown in the screenshot above, a value to the right of “. " causes the string to be displayed
with that number of characters, ignoring extra characters. A value by itself or to the left of “.”
causes padding. Negative values cause the string to be left justified, with spaces added to the
right if necessary. Positive values cause the string to be right justified, with spaces added to
the left if necessary.

362 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf (cont’d)

%Is - null terminated string in xmem

This conversion specifier is identical to “%s” but the strings come from extended memory in-
stead of root memory.

xdata mystring {*“Now is the time.”’};
printfF(“%ls”, mystring); // Now is the time.

%d - signed decimal
Width specifier I: short values must not include I; without I, long values are treated as short

Precision specifier n: includes '-' and if necessary treats argument as signed

short n;

n = 30000;

printf("%d”, n); // 30000
printf(*'%5d", n); // 30000
printf(*'%6d", n); // 30000
printf("%4d", n); [/ FFF*
unsigned short n;

n = 40000;

printf("%d", n); // -25536
printf("%6d", n); // -25536
printf("%7d", n); // -25536
printf(*%5d", n); /[FEExE
long n;

n = 300000;

printf("%Id", n); // 300000

printfF("%71d", n); // 300000

%u - unsigned decimal
Width specifier I: long values must include I, short values must not:

Precision specifier n: includes '-' if necessary treats argument as if it were unsigned

short n;
n = -25536;
printf("%u’, n); // 40000

unsigned short n;
n = 40000;
printf("%d", n); // 40000

Dynamic C Functions rabbit.com 363

http://www.rabbit.com

printf (cont’d)

%f - float

Width specifier | is ignored for Dynamic C float and double (both 4 bytes)

Precision specifier n . d: n is the total width including '-'and '." ; if n is zero or is omitted, it is

ignored and only d is used.

float T;
f = -88.8888;

printf("%f",);

printf("%10f",);
printf(C"%of",);

printf("%.0f",);
printf("%.3f", T);
printf("%.0f", T);
printf("%0.3F",);
printf("%7.3F",);
printf("%8.3F", F);
printf("%6.3F", F);

%e - exponential

Width specifier | is ignored for Dynamic C float and double (both 4 bytes)

//
//
//
//
//
//
//
//
//
//

-88
-88
*xx
-89
-88
-88
-88
-88
-88

*xx

-888801
-888801

*kkkk*k

-889
-889
-889
-889
-889

**k*x

Precision specifier n.d: n is the total width excluding exponent sign; if n is zero or is omitted,
it is ignored and only d is used; if n larger than width, the result is not padded. d is decimal

places of n.nnn..E[+/-]nn format

float T;
f = -88.8888;

printf("%e\n", T); // -8.888880E+01
printf("%13e\n", F); // -8.888880E+01
printf(*"%12e\n", f); // -8.888880E+01
printf("%.0e\n", f); // -9E+01
printf("%.le\n",); // -8.9E+01
printf("%.3e\n",); // -8_.889E+01
printf("%0.3e\n", T); // -8.889E+01
printf("%9.3e\n", T); // -8.889E+01
printf(*"%15.3e\n", f); // -8_889E+01
printf("%8.3e\n",); [[FFEFFFFEK
printf(""%8.3e\n", -f); // 8.889E+01

364 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf (cont’d)

%g - floating point
(Same as %f or %e depending upon value and precision.)
float f, g, h;

f = -888.8888;

g = 888888.0

g = 8888880.0

printf(""%g\n", g); // 888888.0
printf(""%g\n", h); // 8.888880E+06
printf(""%g\n",); //-888.888790
printf(*"%13g\n", f); // -888.888790
printf(*"%12g\n", f); // -888.888790
printf("%.0g\n", T); // -8.9E+02
printf("%.1g\n", T); // -8.9E+02
printf("%.2g\n",); // -8.89E+02
printf("%.3g\n",); // -888.889
printf(*"%7.3g\n", f); [FFEFFAA
printf(""%0.3g\n", f); // -888.889
printfF(""%9.3g\n", f); // -888.889
printf(*"%15.3g\n", f); // -888.889
printf("%8.3g\n",); // -888.889

printf("%8.3g\n", -f); // 888.889

%p - pointer
Specifies a 16-bit logical pointer.

int i, *iptr;

i =0;

pt &i;

-

printf(C"%p\n",ptr); // prints value of ptr in hex.
/7 logical memory location of i

%lIp - pointer
Specifies a 32-bit physical pointer.
long 1, *iptr;
i =0;
ptr = &i;

printf("%Ip\n",ptr); /7 prints value of ptr in hex.
// physical memory location of i

Dynamic C Functions rabbit.com 365

http://www.rabbit.com

printf (cont’d)

%X - hexadecimal
Result in lowercase
Width specifier I: short values must not include I; without I, long values are treated as short

Precision specifier n: must be at least as large as total width; treats argument as if it were un-
signed

short n;

n = 30000;

printf(C"%x', n); //7530
printfF(%5x™, n); // 7530
printf("%6x", n); // 7530
printfF("%3x™", n); /] F**
unsigned short n;

n = 40000;

printf(C%x', n); // 9c40
long m, n;

m = -25536;

n = 0x10000 + Oxabc;
printf(C"%x\n", m); // 9c40
printf("%x\n", z); // abc

%X - hexadecimal
Same as %x except the result is in uppercase.

%c - single character
Precision specifier n is ignored for %c; treats argument as if it were char

long n;
n = 0x10000 + Ox100 + "AT;
printf(""%0c', n); // A

short n;
n = 0x100 + "A";
printf(""%0c", n); // A

char n;
n = "A";
printf(""%0c", n); // A

Not supported:

%o0 - octal
%E - same as %e, result uppercase (the result is always in uppercase in Dynamic C)
%G - same as %g, result uppercase (the result is always in uppercase in Dynamic C)

366

rabbit.com Dynamic C Functions

http://www.rabbit.com

putchar

void putchar(int ch);

DESCRIPTION

Puts a single character to Stdout. The user should make sure only one process calls this function
at a time.

PARAMETERS

ch Character to be displayed.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

puts

int puts(char * s);

DESCRIPTION

This function displays the string on the stdio window in Dynamic C. The Stdio window is re-
sponsible for interpreting any escape code sequences contained in the string. Only one process
at a time should call this function.

PARAMETERS

s Pointer to string argument to be displayed.

RETURN VALUE
1: Success.

LIBRARY
STDIO.LIB

SEE ALSO
putchar, gets

Dynamic C Functions rabbit.com 367

http://www.rabbit.com

pwm_init

unsigned long pwm_init(unsigned long frequency);

DESCRIPTION

Sets the base frequency for the pulse width modulation (PWM) and enables the PWM driver on
all four channels. The base frequency is the frequency without pulse spreading. Pulse spreading
(see pwm_set()) will increase the frequency by a factor of 4.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.
PARAMETER

frequency Requested frequency (in Hz)

RETURN VALUE

The actual frequency that was set. This will be the closest possible match to the requested fre-
quency.

LIBRARY
PWM.LIB (was in R3000.LIB prior to DC 10)

368 rabbit.com Dynamic C Functions

http://www.rabbit.com

pwm_set

int pwm_set(int channel, int duty_cycle, int options);

DESCRIPTION

Sets a duty cycle for one of the pulse width modulation (PWM) channels. The duty cycle can
be a value from 0 to 1024, where 0 is logic low the whole time, and 1024 is logic high the whole
time. Option flags are used to enable features on an individual PWM channel. Bit masks for
these are:

* PWM_SPREAD - sets pulse spreading. The duty cycle is spread over four separate pulses to
increase the pulse frequency.

» PWM_OPENDRAIN - sets the PWM output pin to be open-drain instead of a normal push-pull
logic output.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
channel channel(0 to 3)
duty cycle value from 0 to 1024
options combination of optional flags (see above)

RETURN VALUE

0: Success.
-1: Error, an invalid channel number is used.
-2: Error, requested duty_cycle isinvalid.

LIBRARY
PWM_LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 369

http://www.rabbit.com

pxalloc

long pxalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pFree () to avoid memory leaks.

PARAMETERS

p Pool handle structure, as previously passed to pool_xinit().

RETURN VALUE
0: No free elements are available.

10: Physical (xmem address) of an element. If the pool is not linked, your application can use
this element provided it does not write more than p->elsize bytes to it (this was the
elsize parameter passed to pool_xinit()). If the pool is linked, you can write up to
(p—>elsize-8) bytes to it. (Each element has 8 bytes of overhead when the pool is

linked.)

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pxcalloc, pxfree, phwm, pavail

370 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxalloc_fast

xmem long pxalloc_fast(Pool_t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pxfree () to avoid memory leaks.

This is an assembler-only version of pxal loc().
*** Do _not_ call this function from C. ***

pxal loc_Tfast does not perform any IPSET protection, parameter validation, or update the
high-water mark. pxal loc_fast isaroot function. The parameter must be passed in 1X, and
the returned element address is in BCDE.

REGISTERS

Parameter in 1X
Trashes AF, HL
Return value in BCDE, carry flag.

EXAMPLE

Id ix,my_pool

Icall pxalloc_fast

jr c,.no_free

; BCDE points to element

PARAMETERS

p Pool handle structure, as previously passed to pool _init() Pass this
in the IX register.

RETURN VALUE

C flag set: No free elements are available. (BCDE is undefined in this case.)
NC flag: BCDE points to an element If the pool is not linked, your application must not write
more than p—>elsize bytes to it (this was the el s1ze parameter passed to

pool_xinit()). If the pool is linked, you can write (p—>elsize-8) bytes to it. (An ele-
ment has 8 bytes of overhead when the pool is linked.)

LIBRARY
POOL.LIB

SEE ALSO
pool _init, pfree_fast, pavail_fast, pxalloc

Dynamic C Functions rabbit.com

371

http://www.rabbit.com

pxcalloc

long pxcalloc(Pool_t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pxfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

p Pool handle structure, as previously passed to pool_xinit().

RETURN VALUE
0O: No free elements are available.

10: Physical (xmem address) of an element. If the pool is not linked, your application must not
write more than p->elsize bytes to it (this was the el size parameter passed to
pool_xinit()). Theapplication can write up to (p->e I size-8) bytes to the element
if the pool is linked. (An element has 8 bytes of overhead when the pool is linked.)

LIBRARY

POOL.LIB

SEE ALSO
pool xinit, pxalloc, pxfree, phwm, pavail

372 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxFirst

long pxfirst(Pool t * p);

DESCRIPTION

Get the first allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool _link(p, <non-zero>); otherwise, the results are undefined.

PARAMETERS

p Pool handle structure, as previously passed to pool_xinit().

RETURN VALUE

O: There are no allocated elements
10: Pointer to first, i.e., oldest, allocated element.

LIBRARY
POOL.LIB

SEE ALSO
pool xinit, pool _link, pxalloc, pxfree, pxlast, pxnext, pxprev

Dynamic C Functions rabbit.com 373

http://www.rabbit.com

pxFirst_fast

xmem long pxfirst_fast(Pool_t * p);

DESCRIPTION

Get the first allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool _link(p, <non-zero>); otherwise, the results are undefined.

This is an assembler-only version of pxFirst().
*** Do _not_ call this function from C. ***
Registers

Parameter in IX
Trashes F, HL
Return value in BCDE, carry flag

Example

Id ix,my_pool

Icall pxfirst_fast

jr c,.no_elems

; BCDE points to first element

PARAMETERS

p Pool handle structure, as previously passed to pool _init(). Pass this
in 1X register.

RETURN VALUE

C flag set: There are no allocated elements
C flag clear (NC): BCDE points to first element

LIBRARY
POOL.LIB

SEE ALSO
pool_xinit, pool_link, pxfirst, pxnext_fast

374 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxfree

void pxfree(Pool_t * p, long e);

DESCRIPTION
Free an element that was previously obtained via pxal loc ().

Note: if you free an element that was not allocated from this pool, or was already free, or was
outside the pool, then your application will crash! You can detect most of these programming
errors by defining the following symbols before #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
p Pool handle structure, as previously passed to pxal loc().

e Element to free, which was returned from pxalloc().

RETURN VALUE

nul I: There are no more elements
T'nul I; Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool_xinit, pxalloc, pxcalloc, phwm, pavail

Dynamic C Functions rabbit.com

375

http://www.rabbit.com

pxfree_ fast

xmem void pxfree_fast(Pool_t * p, long e);

DESCRIPTION

Free an element that was previously obtained via pxal loc (). This is an assembler-only ver-
sion of pxfree().

*** Do _not_ call this function from C. ***

pxfree_fast does not perform any IPSET protection or parameter validation.
pxfree_Tast is an xmem function. The parameters must be passed in machine registers.

Registers

Parameters in IX, BCDE respectively
Trashes AF, BC, DE, HL

Example

Id ix,my_pool

Id de, (element_addr)
Id bc, (element_addr+2)
Icall pxfree_fast

PARAMETERS
p Pool handle structure, as previously passed to pal loc() or
palloc_fast. This must be in the IX register.
e Element to free, which was returned from pal loc (). This must be in the

BCDE register (physical address)

RETURN VALUE

nul I: There are no more elements
I'nul I: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool_init, pxalloc_fast, pavail_fast, pfree_fast

376 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxlast

long pxlast(Pool_t * p);

DESCRIPTION

Get the last allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool _link(p, <non-zero>); otherwise, the results are undefined.

PARAMETERS

p Pool handle structure, as previously passed to pool_xinit().

RETURN VALUE

O: There are no allocated elements
10: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool_xinit, pool_link, pxalloc, pxfree, pxfirst

Dynamic C Functions rabbit.com 377

http://www.rabbit.com

pxlast_fast

xmem long pxlast_fast(Pool_t * p);

DESCRIPTION

Get the last allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool _link(p, <non-zero>); otherwise, the results are undefined.

This is an assembler-only version of pxlast().
*** Do _not_ call this function from C. ***
Registers

Parameter in IX
Trashes F, HL
Return value in BCDE, carry flag

Example

Id ix,my_pool

Icall pxlast_fast

jr c,.no_elems

; BCDE points to last element

PARAMETERS

p Pool handle structure, as previously passed to pool _xinit(). Pass this
in 1X register.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE points to last element

LIBRARY
POOL.LIB

SEE ALSO
pool_xinit, pool_link, pxlast, pxprev_fast

378 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxnext

long pxnext(Pool_t * p, long e);

DESCRIPTION

Get the next allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool _link(p, <non-zero>); otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

long e;
Pool_t * p;

for (e = pxfirst(p); e; e = pxnext(p, e)) {

}
PARAMETERS
p Pool handle structure, as previously passed to pool_xinit().
e Previous element address, obtained by e.g. pxFirst(). This must be an

allocated element in the given pool, otherwise the results are undefined. Be
careful when iterating through a list and deleting elements using
pxfree(): once the element is deleted, is is no longer valid to pass its
address to this function. If this parameter is zero, then the result is the same
as pxFirst(). This ensures the invariant

pxnext(p, pxprev(p, €)) == e.

RETURN VALUE
O: There are no more elements
10: Pointer to the next allocated element
LIBRARY
POOL.LIB

SEE ALSO
pool_xinit, pool_link, pxalloc, pxfree, pxfirst, pxprev

Dynamic C Functions rabbit.com 379

http://www.rabbit.com

pxnext_ fast

xmem long pxnext_fast(Pool_t * p, long e);

DESCRIPTION
Get the next allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool _link(p, <non-zero>); otherwise, the results are undefined.
This is an assembler-only version of pxnext().
*** Do _not_ call this function from C. ***

Registers

Parameters in IX, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

Example

Id ix,my_pool

Id de, (current_element)

Id bc, (current_element+2)

Icall pxnext fast

Jjr c,.no_more_elems

; BCDE points to next allocated element

PARAMETERS
p Pool handle structure, as previously passed to pool _xinit(). Pass this
in the IX register.
e Current element, address in BCDE register. See pxnext() for fuller de-

scription.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE points to next element

LIBRARY
POOL.LIB

SEE ALSO
pool_xinit, pool_link, pxalloc, pxfree, pxfirst, pxprev

380 rabbit.com Dynamic C Functions

http://www.rabbit.com

pXxprev

long pxprev(Pool_t * p, long e);

DESCRIPTION
Get the previous allocated element in an xmem pool. The pool MUST be set to being a linked
pool using pool _link(p, <non-zero>); otherwise the results are undefined.

You can easily iterate through all of the allocated elements of an xmem pool using the following

construct:
long e;
Pool_t * p;
for (e = pxlast(p); e; e = pxprev(p, €)) {
}

PARAMETERS
p Pool handle structure, as previously passed to pool_xinit().
e Previous element address, obtained by e.g., pxlast(). This must be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pxfree(): once the element is deleted, it is no longer valid to pass its ad-
dress to this function. If this parameter is zero, then the result is the same
as pxlast(). This ensures the invariant

pxlast(p, pxnext(p, €)) == e

RETURN VALUE
O: There are no more elements
10: Points to previously allocated element
LIBRARY
POOL.LIB

SEE ALSO
pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext

Dynamic C Functions rabbit.com 381

http://www.rabbit.com

pxprev_fast

xmem long pxprev_fast(Pool_t * p, long e);

DESCRIPTION
Get the previous allocated element in an xmem pool. The pool MUST be set to being a linked
pool using pool _link(p, <non-zero>); otherwise, the results are undefined.
This is an assembler-only version of pxprev().
*** Do _not_ call this function from C. ***
Registers

Parameters in IX, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

Example

Id ix,my_pool

Id de, (current_element)

Id bc, (current_element+2)

Icall pxprev_fast

jr c,.no_more_elems

; BCDE points to previously allocated element

PARAMETERS
p Pool handle structure, as previously passed to pool_xinit(). Pass this
in IX register.
e Current element, address in BCDE register. See pxprev () for fuller de-
scription.

RETURN VALUE

C flag set: there are no more elements
C flag clear (NC): BCDE points to previous element

LIBRARY
POOL.LIB

SEE ALSO
pool xinit, pool link, pxalloc, pxprev

382 rabbit.com Dynamic C Functions

http://www.rabbit.com

qd_error

char qd_error(int channel);

DESCRIPTION

Gets the current error bits for that qd channel. This function is intended to be used with the Rab-
bit 3000 and Rabbit 4000.

PARAMETERS

channel The channel to read errors from (currently 1 or 2).
RETURN VALUE

Set of error flags, that can be decoded with the following masks:

QD_OVERFLOW 0x01
QD_UNDERFLOW 0x02

LIBRARY
QD.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 383

http://www.rabbit.com

qd_init

void qgd_init(int iplevel);

DESCRIPTION

If your board has a Rabbit 3000A microprocessor installed, the quadrature decoder can be set
for 10 bit counter operation. For 10 bit operation, add the following macro at the top of your
application program.

#define

QD_10BIT_OPERATION

If the above macro is not defined then the quadrature decoder defaults to 8 bit counter operation.
With the Rabbit 3000 processor you must use the default 8-bit operation; defining the 10-bit
macro will cause a compile time error.

Sample program Samples/Rabbit3000/QD_Phase_10bit.c demonstrates the use

of the macro.

If your board has a Rabbit 4000 microprocessor installed, the quadrature decoder inputs must
be chosen with one of the following defines. Define only one per quadrature decoder.

#define
#define
#define

#define
#define
#define

QD1_USEPORTD
QD1_USEPORTEL
QD1_USEPORTEH

QD2_USEPORTD
QD2_USEPORTEL
QD2_USEPORTEH

//
//
/7/

//
//
//

use port D pins 1 and 0
use port E pins 1 and 0
use port E pins 5 and 4

use port D pins 3 and 2
use port E pins 3 and 2
use port E pins 7 and 6

If no macro is defined for a decoder, that decoder will be disabled.

PARAMETERS

iplevel

LIBRARY
QD.LIB (was in R3000.LIB prior to DC 10)

The interrupt priority for the ISR that handles the count overflow. This

should usually be 1.

384

rabbit.com

Dynamic C Functions

http://www.rabbit.com

qd_read

long qd_read(int channel);

DESCRIPTION

Reads the current quadrature decoder count. Since this function waits for a clear reading, it can
potentially block if there is enough flutter in the decoder count.

This function is intended to be used with the Rabbit 3000 and Rabbit 4000.

PARAMETERS

channel The channel to read (currently 1 or 2).

RETURN VALUE
Returns a signed long for the current count.

LIBRARY
QD.LIB (was in R3000.LIB prior to DC 10)

qd_zero
void gd_zero(int channel);

DESCRIPTION
Sets the count for a channel to 0. This function is intended to be used with the Rabbit 3000 and
Rabbit 4000.

PARAMETERS
channel The channel to reset (currently 1 or 2)

LIBRARY

QD.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 385

http://www.rabbit.com

gsort

int gsort(char * base, unsigned n, unsigned s, Int (*cmp) O);

DESCRIPTION
Quick sort with center pivot, stack control, and easy-to-change comparison method. This ver-
sion sorts fixed-length data items. It is ideal for integers, longs, floats and packed string data
without delimiters. Raw integers, longs, floats or strings may be sorted, however, the string sort
is not efficient.

PARAMETERS
base Base address of the raw string data.
n Number of blocks to sort.
s Number of bytes in each block.
cmp User-supplied compare routine for two block pointers, p and g, that returns

an int with the same rules used by Unix strcmp(p,q):

= 0: Blocks p and g are equal
<0:pislessthanq
> 0: p is greater than g

Beware of using ordinary strcmp ()—it requires a null at the end of each
string.
RETURN VALUE
O if the operation is successful.

LIBRARY
SYS.LIB

EXAMPLE - Sorts an array of integers.

int mycmp(int *p, int *q){ return (*p - *q);}
const int q[10] {12,1,3,-2,16,7,9,34,-90,10};
const int p[10] {12,1,3,-2,16,7,9,34,-90,10};

main() {
int i;
gsort(p,10,2,mycmp);
for(i=0;i<10;++i) printf('%d. %d, %d\n",i,p[i]l.q[il);
}
Output from the above sample program:
0. -90, 12
1. -2, 1
2. 1, 3
3. 3, -2
4. 7, 16
5. 9, 7
6. 10, 9
7. 12, 34
8. 16, -90
9. 34, 10

386 rabbit.com Dynamic C Functions

http://www.rabbit.com

rad

float rad(float x);
DESCRIPTION
Convert degrees (360 for one rotation) to radians (2z for a rotation).
PARAMETERS
X Degree value to convert.

RETURN VALUE
The radians equivalent of degree.

LIBRARY
SYS.LIB

SEE ALSO
deg

rand

float rand(void);

DESCRIPTION

Returns a uniformly distributed random number in the range 0.0 < v < 1.0. Uses algorithm:

rand = (5 * rand) modulo 2%?

A default seed value is set on startup, but can be changed with the srand () function.
rand() is not reentrant.

RETURN VALUE
A uniformly distributed random number: 0.0 <v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO
randb, randg, srand

Dynamic C Functions rabbit.com

387

http://www.rabbit.com

randb

float randb(void);

DESCRIPTION
Uses algorithm:
rand = (5 * rand) modulo 2%?

A default seed value is set on startup, but can be changed with the srand () function.
randb () is not reentrant.

RETURN VALUE
Returns a uniformly distributed random number: -1.0 <v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO
rand, randg, srand

randg

float randg(void);

DESCRIPTION

Returns a gaussian-distributed random number in the range -16.0 < v < 16.0 with a standard de-
viation of approximately 2.6. The distribution is made by adding 16 random numbers (see
rand()). This function is not task reentrant.

RETURN VALUE
A gaussian distributed random number: -16.0 < v <16.0.

LIBRARY
MATH.LIB

SEE ALSO
rand, randb, srand

388 rabbit.com Dynamic C Functions

http://www.rabbit.com

RdPortE

int RdPortE(unsigned int port);

DESCRIPTION
Reads an external 1/O register specified by the argument.

PARAMETERS
port Address of external parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port specified by
the argument. Upper byte contains zero.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortl, BitRdPortl, WrPortl, BitWrPortl, BitRdPortE, WrPortkE,
BitWrPortE

Dynamic C Functions rabbit.com 389

http://www.rabbit.com

RdPortl

int RdPortl(int port);

DESCRIPTION
Reads an internal 1/0O port specified by the argument (use RdPortE() for external port).

All of the Rabbit internal registers have predefined macros corresponding to the name of the
register. PADR is #defined to be 0x30, etc.

PARAMETERS

port Address of internal 1/0 port

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port specified by
the argument. Upper byte contains zero.

LIBRARY
SYSI0.LIB

SEE ALSO

RdPortE, BitRdPortl, WrPortl, BitWrPortl, BitRdPortE, WrPortE,
BitWrPortE

390 rabbit.com Dynamic C Functions

http://www.rabbit.com

ReadCompressedFile

int ReadCompressedFile(ZFILE * input, UBYTE * buf, int lenx);

DESCRIPTION

This function decompresses a compressed file (input ZF I LE, opened with
OpenlnputCompressedFi le()) using the LZ compression algorithm on-the-fly, placing
a number of bytes (Ienx) into a user-specified buffer (buf).

PARAMETERS
input Input bit file.
buf Output buffer.
lenx Number of bytes to read. This can be increased to get more throughput or

decreased to free up variable space.

RETURN VALUE
Number of bytes read

LIBRARY
LZSS.LIB

Dynamic C Functions rabbit.com

391

http://www.rabbit.com

read rtc

unsigned long read_rtc(void);

DESCRIPTION

Reads seconds (32 bits) directly from the Real-time Clock (RTC). Use with caution! In most
cases use long variable SEC_TIMER, which contains the same result, unless the RTC has been
changed since the start of the program.

If you are running the processor off the 32 kHz crystal and using a Dynamic C version prior to
7.30, use read_rtc_32kHz() instead of read_rtc(). Starting with DC 7.30,

read_rtc_32kHz() is deprecated because it is no longer necessary. Programmers should
only use read_rtc().

RETURN VALUE

Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

SEE ALSO
write rtc

read_rtc_32kHz

unsigned long read_rtc_32kHz(void);

DESCRIPTION

Reads the real-time clock directly when the Rabbit processor is running off the 32 kHz oscilla-
tor. See read_rtc() for more details.

RETURN VALUE

Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

392 rabbit.com Dynamic C Functions

http://www.rabbit.com

readUserBlock

int readUserBlock(void * dest, unsigned addr, unsigned numbytes);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a buffer in root memory.
Please note that portions of the User block may be used by the BIOS for your board to store
values. For example, any board with an A to D converter will require the BIOS to write
calibration constants to the User block. For some versions of the BL2000 and the BL2100 this
memory area is 0x1C00 to Ox1FFF. See the user’s manual for your particular board for more
information before overwriting any part of the User block. Also, see the Rabbit Microprocessor
Designer’s Handbook for more information on the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
readUserBlockArray() should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in use
by another device. However, if using uC/OS-Il and _SP1_USE_UCOS_MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SP1_MUTEX_ERROR will occur. See
the description for _rcm43_1nitUCOSMutex () for more information on using
pMC/OS-11 and _SP1_USE_UCOS_MUTEX.

PARAMETERS
dest Pointer to destination to copy data to.
addr Address offset in User block to read from.
numbytes Number of bytes to copy.

RETURN VALUE

O: Success
-1: Invalid address or range
-2: No valid ID block found (block version 3 or later)

The return values below are applicable only if _SP1_USE_UCOS_MUTEX is not #defined:
—-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO
writeUserBlock, readUserBlockArray

Dynamic C Functions rabbit.com 393

http://www.rabbit.com

readUserBlockArray

int readUserBlockArray(void * dests[], unsigned numbytes[], int
numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffers in root
memory. This function is usually used as the inverse function of
writeUserBlockArray().

This function was introduced in Dynamic C version 7.30.

Note: Portions of the User block may be used by the BIOS to store values such as calibra-
tion constants. See the manual for your particular board for more information before over-
writing any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
readUserBlockArray() should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in use
by another device. However, if using uC/OS-Il and _SP1_USE_UCOS_MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SP1_MUTEX_ERROR will occur. See
the description for _rcm43_ InitUCOSMutex () for more information on using
pC/OS-11and _SP1_USE_UCOS_MUTEX.

PARAMETERS
dests Pointer to array of destinations to copy data to.
numbytes Array of numbers of bytes to be written to each destination.
numdests Number of destinations.
addr Address offset in User block to read from.

RETURN VALUE

0O: Success
-1: Invalid address or range
-2: No valid System ID block found (block version 3 or later)
The return values below are applicable only if _SP1_USE_UCOS_MUTEX is not #defined:
—-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO
writeUserBlockArray, readUserBlock

394 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry_enumerate

int registry_enumerate(RegistryContext * r, int (*f)(), iInt
keyvalues, void far * ptr);

DESCRIPTION

Enumerate registry r->old_spec, calling the specified function “f” for each section header and,
optionally, key=value pair.

The registry_get() function also performs enumeration; in fact it is a wrapper for this
function.

PARAMETERS

r RegistryContext structure, with at least the old_spec field initialized.
For example, use registry_prep_read() to set up the struct cor-
rectly.

r->old_spec: Open resource handle of a readable resource containing the
registry settings. This is read from the current seek position, thus in most
cases call this function with a freshly opened resource handle.

L Callback function to be invoked. The function prototype must be as fol-
lows:
int f(void far * ptr,
int new_sect,
char * sect,
char far * key,
char far * value) { ... }

where the parameters are:
* ptr - this is passed through from the 4th parameter to the
registry_enumerate() function (see below).

» new_sect - boolean indicating whether this call is to introduce a new sec-
tion. If true, then 'sect' is the new section name, and 'key' and 'value' are
not relevant.

* sect - name of section if new_sect flag is true
key - key (field) ascii string if new_sect is false
« value - value as an ascii string if new_sect is false.

keyvalues Boolean indicating whether the callback function is to be invoked for
key=value pairs (if true). In either case, the callback is inkoked whenever
a new section is found, and the new_sect callback parameter will be set
true.

ptr An arbitrary pointer which will be passed through to the callback on each
invocation.

Dynamic C Functions rabbit.com 395

http://www.rabbit.com

registry_enumerate (cont’d)

RETURN VALUE

<0: failure to write or read the resource
0: success

LIBRARY
registry._lib

SEE ALSO

sspec_open, registry read, registry update, registry_get,
registry _prep_read, registry_ finish_read

396 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry_get

int registry_get(char * basename, char far * section,
RegistryEntry * re, ServerContext * sctx, int (*f)(),
int keyvalues, void far * ptr);

DESCRIPTION

Convenience function for reading and/or enumerating registry contents. This basically com-
bines calls to the following functions:

registry_prep_read()
registry_read() and/or registry_enumerate()
registry_finish_read()

If the field array (re) is not NULL, then registry_read() will be called. If the callback
function (f) is not NULL, then registry_enumerate () will be called. If both re and f are
not NULL, then read will be invoked before enumerate.

PARAMETERS

basename Base name of registry file, as a Zserver resource name. This file must not
have an extension, since the extensions ".1", ".2" and so on are appended
to the name.

section Section name to read (may be NULL to read the anonymous section at the
start of the registry file).

re Array of fields to read. See registry_read() function description
for details.

sctx Server context.

O Callback function. See registry_enumerate() for details.

keyvalues Boolean indicating whether callback receives key=value pairs as well as
section headers. If false, it only receives section headers.

ptr Acrbitrary application data which will be dutifully passed through to the

callback without alteration.

RETURN VALUE

<0: general failure, code will be negative of one of the codes in ERRNO . L IB.
0: OK

LIBRARY
register.lib
SEE ALSO

registry_prep_read, registry read, registry fTinish_read,
registry_enumerate, registry_update

Dynamic C Functions rabbit.com 397

http://www.rabbit.com

registry finish_read

int registry_finish_read(RegistryContext * r);

DESCRIPTION
Finish reading a registry, and clean up resources. Most applications will use the sequence of
functions:

registry_prep_read()
registry read() and/or registry_enumerate()|
registry_ fTinish_read()

PARAMETER

r RegistryContext struct, as set by registry_prep_read().

RETURN VALUE

<0: general failure, code will be negative of one of the codes in ERRNO . L 1B.
0: OK.

LIBRARY
registry._lib

SEE ALSO

registry_read, registry prep_read, registry prep_write,
registry _write, registry fTinish _write, registry_enumerate,
registry_update, registry get

398 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry finish_write

int registry_finish_write(RegistryContext * r);

DESCRIPTION
Finish updating a registry, and clean up resources. Most applications will use the sequence of
functions

registry_prep_write(Q)
registry write(Q)
registry_fTinish _write()

PARAMETER

r RegistryContext structure, as set by registry_prep_read().

RETURN VALUE

<0: general failure, code will be negative of one of the codes in ERRNO.LIB.
0: OK

LIBRARY
registry._lib

SEE ALSO

registry_read, registry prep_read, registry prep _write,
registry _write, registry fTinish_read, registry_enumerate,
registry_update, registry get

Dynamic C Functions rabbit.com

399

http://www.rabbit.com

registry _prep_read

int registry_prep_read(RegistryContext * r, char * basename,
ServerContext * context);

DESCRIPTION

Prepare for reading a registry. This function helps organize registry resources in order to create
a robust registry.

Most applications will use the sequence of functions:
registry_prep_read()

registry_read() and/or registry_enumerate()
registry_finish_read()

or simply
registry_get()

Registry updates require reading from an old registry, editing it, then writing the modified result
to a new registry resource. This requires two resources to be open. Normally, the "old" registry
will be deleted once the update is successful. If there is a power outage or reset during this pro-
cess, it is possible for two registry files to exist when the system is restarted. This causes prob-
lems, since one of the registries may be corrupt. This APl imposes a naming convention on the
old/new resources so that a non-corrupt registry can always be found.

The algorithm used appends an extension to the basename resource name. The extensionis".1",
".2" or ".3". The "current" registry resource will cycle through these extensions. It is assumed
that exactly 0, 1 or 2 of these resources will exist at any time. This means that at least one of the
possible resource names will not exist. (If all three exist, then the behavior is undefined, since
the resources must have been created outside the registry system. The application is responsible
for ensuring this does not happen, otherwise the ability to find a non-corrupt registry will be
compromised).

400 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry prep_read (cont’d)

If none of the resources exist, then this indicates a brand new registry. If exactly one exists, then
this is the old (and presumed non-corrupt) registry. If two exist, it is assumed that one of the
resources is OK and the other corrupt. Since there are only 3 possible extensions, and they in-
crement in wrap-around fashion, the "lowest" numbered extension is assumed to be the non-cor-
rupt one, with "lowest" being in the sense of modulo 3. This is summarized in the following

table:

Existing Extensions Assumed Non-corrupt

None, new registry

1 1

2 2

3 3

1,2 1 (2 will be deleted)

2,3 2 (3 will be deleted)

1,3 3 (1 will be deleted)

Should not happen - will

1,2,3 arbitrarily pick 1 and delete

2,3.

In the case that more than one registry extension was found, the presumed corrupt resource is
automatically deleted to clean up the registry.

PARAMETERS

r

basename

RegistryContext structure. This is used to pass information in a consistent
manner between the major registry API functions. It may be passed unini-
tialized to this function. This function fills in the r->old_spec field to indi-
cate the open resource which will be used by registry_read(). The
value may also be set to -1 if there was an error or no existing resource
could be located.

Base name (including path) of the registry This should NOT include any
extension (e.g. ".foo™) since the extension is manipulated by this function.
In practice, this will need to be a resource name on non-volatile storage,
which supports names with extensions. In practice, this limits the appro-
priate filesystem to FAT filesystem only. For example

registry_prep_read("/A/myreg', &spec);

will select from a set of registry files called /A/myreg.1, /A/myreg.2,
/A/myreg.3 of which, normally, only one will exist at any time.

Dynamic C Functions

rabbit.com

401

http://www.rabbit.com

registry prep_read (cont’d)

context ServerContext struct. E.g. from http_getContext().

RETURN VALUE

<0: General failure, code will be negative of one of the codes in ERRNO . L 1B.
0: there is currently no resource of the given name. This is not necessarily an error, since it will
be returned if the registry has not yet been created.

1,2, 3: Anexisting presumed non-corrupt resource has been opened. The numeric return code
indicates which of the extensions was located.

LIBRARY

register._lib

SEE ALSO

registry_read, registry Tinish_read, registry prep write,
registry_write, registry_finish_write, registry_enumerate,
registry_update, registry get

402 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry prep_write

int registry_prep_write(RegistryContext * r, char * basename,
ServerContext * context);

DESCRIPTION

Prepare for updating a registry. This function helps organize registry resources in order to create
a robust registry.

Most applications will use the sequence of functions
registry _prep _write()
registry write()
registry_finish_write()

or, more simply, just
registry_update()

See the function description for registry_prep_read() for details concerning the orga-
nization of registry files.

Like registry_prep_read(), this function opens an existing presumed non-corrupt reg-
istry for reading, and also a new empty registry (the "next" registry) for writing the updated es-
ults, as required by registry_write().

PARAMETERS

r RegistryContext struct. This is used to pass information in a consistent
manner between the major registry API functions. It may be passed unini-
tialized to this function.

basename Base name (including path) of the registry. This should NOT include any
extension (e.g. ".foo™) since the extension is manipulated by this function.
In practice, this will need to be a resource name on non-volatile storage,
which supports names with extensions. In practice, this limits the appropri-
ate filesystem to FAT filesystem only. For example
registry_prep_write(""/A/myreg", &oldspec, &newspec);
will select from a set of registry files called
[A/myreg.1, /A/myreg.2, /A/myreg.3\ of which, normally, only two will
exist at any time; one will be opened for reading, and the other will be emp-
ty and ready for writing.

context ServerContext structure. E.g. from http_getContext().

Dynamic C Functions rabbit.com 403

http://www.rabbit.com

registry prep _write (cont’d)

RETURN VALUE
<0: general failure, code will be negative of one of the codes in ERRNO_L1B.
0:thereiscurrently noresource of the given name. *oldp will be setto-1 inthis case. Thisis
not necessarily an error, since it will be returned if the registry has not yet been created. You can

pass *oldp to registry_write() in this case, and it will correctly create the new registry
without attempting to read the (non-existent) "old" registry.

1,2,3: An existing presumed non-corrupt resource has been opened, and the open resource han-
dle returned in *oldp. The numeric return code indicates which of the extensions was located.
Note that the "new" registry file will be this number plus 1 (except that 4 becomes 1).

LIBRARY
register.lib

SEE ALSO
registry_read, registry finish_read, registry_prep_read,
registry_write, registry_ finish_write, registry_enumerate,
registry_update, registry get

404 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry_read

int registry_read(RegistryContext * r, char far * section,
RegistryEntry far * entries);

DESCRIPTION

Read the registry r->old_spec using the specified registry entries. Only entries in the named
“section” are read, and the results are placed at the locations pointed to by the RegistryEntry

array elements.

Note: Since this function requires some temporary malloc memory, you should ensure that
there is at least _REGBUF_S1ZE bytes of available system-space malloc memory. The
_REGBUF_SI1ZE macro defaults to 1025 bytes, but you may override this definition
before #use registry.lib.

r

section

entries

RETURN VALUE

RegistryContext structure, with at least the old_spec field initialized. For
example, use registry_prep_read() to set up this structure cor-
rectly.

r->old_spec:
Open resource handle of a readable resource containing the registry set-

tings. This is read from the current seek position, thus in most cases you
will want to call this function with a freshly opened resource handle.

Section name. If NULL or empty string, then the first (anonymous) section
of the registry is implied.

List of registry entries to read. See the registry_write() description
for details. The “value” field will be set to point to the location where the
read value is stored. If the key does not exist in the specified section, then
the contents at this location will be untouched. Thus, you can set “default”
values at each location before calling registry_read().

Asforregistry_write(),the list MUST be terminated with an entry
with the REGOPT ION_EOL option.

<0: failure to write or read the resource

0: success

LIBRARY
register.lib

SEE ALSO

sspec_open, registry _write, registry update, registry_get,
registry_prep_read, registry_finish_read

Dynamic C Functions

rabbit.com

405

http://www.rabbit.com

registry_ update

int registry_update(char * basename, char far * section,
RegistryEntry * re, ServerContext * sctx);

DESCRIPTION

Convenience function for updating a registry with a minimum of fuss. Basically combines the
function calls:

registry prep _write()
registry write()
registry_finish_write()

PARAMETERS

basename Base name of registry file, as a Zserver resource name. This file must not
have an extension, since the extensions ".1", ".2" and so on are appended
to the name.

section Section name to update (may be NULL to update the anonymous section
at the start of the registry file).

re Array of update commands. See the registry_wr ite() function de-
scription for details. If this pointer is NULL, the entire section is deleted.

sctx Server context.

RETURN VALUE

<0: general failure, code will be negative of one of the codes in ERRNO.LIB.
0: OK

LIBRARY
register.lib

SEE ALSO

registry_prep_write, registry write, registry_finish_write,
registry_get

406 rabbit.com Dynamic C Functions

http://www.rabbit.com

registry write

int registry_write(RegistryContext * r, char far * section,
RegistryEntry far * entries);

DESCRIPTION

Modify the old registry r->0ld_spec using the specified registry entries, writing the result
to r->new_spec. Only entries in the named “section” may be altered. This function also al-
lows entries and sections to be deleted.

The new and old files must be different, since this function depends on reading from the old file,
performing the requested modifications, and writing the new file -- this is all done line-by-line.
Generally, you will need two resource files which will alternate. Only when the modifications
are successfully complete will the old file be deleted. This makes the update process more re-
sistant to corruption caused by e.g., the user turning off the power in the middle of the update.
The helper function registry_prep_write() automates this process.The function
registry_update() encapsulates the basic registry update process.

NOTE: since this function requires some temporary malloc memory, you should ensure that
there is at least REGBUF_SI1ZE bytes of available system-space malloc memory. The
_REGBUF_SIZE macro defaults to 1025 bytes, but you may override this definition before
#use registry.lib.

Registry resources are similar to Windows “.ini” file format. They are ASCII formatted (and
thus human readable) and consist of one or more “sections,” each of which has zero or more
key=value lines. For example:

[net settings]
ip=10.10.6.100
ssid=Rabbit

[app settings]

some integer=23

a string=hello world

Each section is headed by a string enclosed in square brackets. Within each section is a list of
key strings followed by '=' followed by the value of that entry. The key string is arbitrary except
that it cannot start with '[' or contain any '=', null or newline characters. The value string is ar-
bitrary except that newline and null characters are not allowed. Section names are arbitrary ex-
cept they cannot contain '], null or newline characters. Spaces are always significant. In
particular, don't put spaces on either side of the '=' separator.

If there are duplicate keys in the entries table, then it is undefined which of the entries actually
gets stored. Don't do it.

Normally, you do not need to be concerned with the above format rules, since the library func-
tions enforce them.

Dynamic C Functions rabbit.com 407

http://www.rabbit.com

registry write (cont’d)

If you need to store null (binary zero) or newline (binary OxX0A or, in C syntax, "\n") then your
application will need to use some sort of convention for escaping such characters, or you can
use the REGOPT ION_BIN() option which will store the string expanded into ASCII hexadec-
imal, which is completely safe.

Individual key/value entries may be deleted by specifying the REGOPTION_DELETE flag
with the appropriate entries.

PARAMETERS

r RegistryContext structure, with at least the old_spec and new_spec fields
initialized. For example, use registry_prep_write() tosetup this
structure correctly.

r ->old_spec:

Open resource handle of a readable resource containing the old registry set-
tings. This is read from the current seek position, thus in most cases you
will want to call this function with a freshly opened resource handle. This

may also be -1, which indicates there is *no* old registry to update, and a
new registry will be written to new_spec.

r->new_spec: Open resource handle of a writable resource, to which the
old registry (modified with the given settings) will be written. Normally,
this should initially be an empty resource file. The new settings will be
written starting at the current seek position in this resource.

Note that the resource handles remain open when this function returns.

section Section name. If NULL or empty string, then the first (anonymous) section
of the registry is implied.

408

rabbit.com Dynamic C Functions

http://www.rabbit.com

registry write (cont’d)

entries List of replacement registry entries. The list MUST be terminated with an
entry with the REGOPTION_EOL option.

Caution: If this pointer is NULL, then the entire section is deleted.

Each element in this array is as follows:

typedef struct {
char far * key;

void far * value;

int options;

#define REGOPTION_EOL

#define REGOPTION_SHORT
#define REGOPTION_LONG
#define REGOPTION_BOOL
#define REGOPTION_FLOAT

#define REGOPTION_RESV5
#define REGOPTION_RESV6
#define REGOPTION_DELETE
#define REGOPTION_NOP

#define REGOPTION_RESV9

#define REGOPTION_BIN(len) (len)

//
//
/7/
/7/
/7/
//
//
//
/7/

0

Entry key. Must not contain '=" or newlines, and
must not start with '['. Must be null-terminated.
Entry value. Type determined by options. If the
REGOPTION_STRING option is set, this must
not contain newlines and must be null terminated.
Entry options and flags: If value is greater

than zero, then value is an arbitrary binary

value with the specified length. It will be

stored in the registry with twice that many

// ascii hex digits. If value is <=-10, then it i

// ascii string with max length of (-options-8)

// Otherwise, this field is a simple enumeration

// indicating the data type as follows:

//

-1) 7/
-2) 7/
(-3) 7/
(-4) 7/

//

//
(-3
(-6)
7
(-8

-9

End of list

Signed short (2 byte) - stored as decimal
Signed long (4 byte) - tored as decimal

int (2 byte) - stored as 1 (if non-zero) or 0
IEEE float (4 byte)

Only avail if STDIO_DISABLE_FLOATS
not defined, stored in %f format

// Delete this entry if found

// No operation: convenience for
// constructingRegistryEntry lists.
// For variable length data...

// Binary of given fixed length - stored expanded into ascii hexadecimal.
// len must be 1.. REGBUF_SIZE/2-M where M is the size of the key plus 2.
// As arule of thumb, be careful when len is more than about 256.

#define REGOPTION_STRING(len) (-8-(len))

// Null-terminated string up to len chars counting the null terminator - stored as-is.

// len must be at least 2. len must not be more than REGBUF_SIZE-M where M is the
// size of the key plus 2. As a rule of thumb, be careful when len is more than about 512.

word work;

} RegistryEntry;

// Work field for registry read/write lib functions
// May be left uninitialized by the caller unless otherwise noted in the function description.

Dynamic C Functions

rabbit.com 409

http://www.rabbit.com

registry write (cont’d)

RETURN VALUE

<0: failure to write or read the resource
0: success

LIBRARY
REGISTRY.LIB

SEE ALSO

sspec_open, registry read, registry update, registry_get,
registry_prep_write, registry_ finish_write

410 rabbit.com Dynamic C Functions

http://www.rabbit.com

res

void res(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Clears specified bit at memory address to 0. Bit may be
from 0 to 31. This is equivalent to the following expression, but more efficient:

*(long *)address &= ~(1L << bit)

PARAMETERS
address
bit

LIBRARY
UTIL.LIB

SEE ALSO
RES

Address of byte containing bits 7-0.

Bit location where 0 represents the least significant bit.

RES

void RES(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Clears specified bit at memory address to 0. b1t may
be from 0 to 31. This is equivalent to the following expression, but more efficient:

*(long *)address &= ~(1lL << bit)

PARAMETERS
address
bit

LIBRARY

UTIL.LIB

SEE ALSO
res

Address of byte containing bits 7-0.

Bit location where 0 represents the least significant bit.

Dynamic C Functions

rabbit.com

411

http://www.rabbit.com

ResetErrorLog

void ResetErrorLog(void);

DESCRIPTION
This function resets the exception and restart type counts in the error log buffer header. This
function is not called by default from anywhere. It should be used to initialized the error log
when a board is programmed by means other than Dynamic C, cloning, the Rabbit Field Utility
(RFU), or a service processor. For example, if boards are mass produced with pre-programmed
flash chips, then the test program that runs on the boards should call this function.

LIBRARY
ERRORS.LIB

root2vram

int root2vram(void * src, int start, int length);

DESCRIPTION

This function copies data to the VBAT RAM. Tamper detection on the Rabbit 4000 erases the
VBAT RAM with any attempt to enter bootstrap mode.

PARAMETERS
src The address to the data in root to be copied to vbat ram.
start The start location within the VBAT RAM (0-31).
length The length of data to write to VBAT RAM. The length should be greater
than 0.
The parameters length + start should not exceed 32.
LIBRARY
VBAT.LIB
SEE ALSO
vram2root

412 rabbit.com Dynamic C Functions

http://www.rabbit.com

root2xmem

int root2xmem(unsigned long dest, void * src, unsigned len);

DESCRIPTION
Stores Ien characters from logical address src to physical address dest.

PARAMETERS
dest Physical address.
src Logical address.
len Numbers of bytes.

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.
-2: Source not all in root.

LIBRARY
XMEM_LIB

SEE ALSO
xalloc, xmem2root

Dynamic C Functions rabbit.com 413

http://www.rabbit.com

rtc_timezone

int rtc_timezone(long * seconds, char * tzname);

DESCRIPTION
This function returns the timezone offset as known by the library. The timezone is obtained from
the following sources, in order of preference:

1. The DHCP server. This can only be used if the TCP/IP stack is in use, and USE_DHCP is
defined.

2. The TIMEZONE macro. This should be defined by the program to an _hour_ offset - may be
floating point.

PARAMETERS
seconds Pointer to result longword. This will be set to the number of seconds offset
from Coordinated Universal Time (UTC). The value will be negative for
west; positive for east of Greenwich.
tzname If null, no timezone name is returned. Otherwise, this must point to a buffer

of at least 7 bytes. The buffer is set to a null-terminated string of between
0 and 6 characters in length, according to the value of the TZNAME macro.
If TZNAME is not defined, then the returned string is zero length ("").

RETURN VALUE

0O: timezone obtained from DHCP.
-1: timezone obtained from TIMEZONE macro. The value of this macro (which may be Int,
Tloat or a variable name) is multiplied by 3600 to form the return value.
—2: timezone is zero since the TIMEZONE macro was not defined.

LIBRARY
RTCLOCK.LIB

414 rabbit.com Dynamic C Functions

http://www.rabbit.com

runwatch

void runwatch(void);

DESCRIPTION

Runs and updates watch expressions if Dynamic C has requested it with a Ctrl-U. Should be
called periodically in user program.

LIBRARY
SYS.LIB

sdspi_debounce

int sdspi_debounce(sd_device * sd);

DESCRIPTION

This function waits for and debounces the card insertion switch. When it returns True (1), then
a card is fully inserted.

PARAMETER

sd The device structure for the SD card.

RETURN VALUE

1: Success, card fully inserted
0: No card present

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 415

http://www.rabbit.com

sdspi_get_csd

int sdspi_get_csd(sd_device * sd);

DESCRIPTION

This function is called to execute protocol command 9 to retrieve the SD card's Card Specific
Data (CSD) and store it in the respective SD driver configuration object. The CSD data is used
to determine the SD card's physical storage and timing attributes.

PARAMETERS

sd The device structure for the SD card.

RETURN VALUE

0: Success

-E10: 1/O error

—EINVAL.: Invalid parameter given
—~ENOMED IUM: No SD card in socket
—-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

416 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_get_scr

int sdspi_get_scr(sd_device * sd);

DESCRIPTION

This function executes application specific command 51 to retrieve the SD card's Configuration
Register (SCR) and store it in the respective SD driver configuration object. The SCR data is
used to identify the SD card's physical interface version and security version. It also contains
erase state (all 0's or 1's) and supported bus widths.

PARAMETERS

sd The device structure for the SD card.

RETURN VALUE

0: Success

-E10: 1/O error

—-EINVAL: Invalid parameter given
—~ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 417

http://www.rabbit.com

sdspi_getSectorCount

long sdspi_getSectorCount(sd_device * dev);
DESCRIPTION
Return number of usable 512 byte sectors on an SD card.

PARAMETER

dev Pointer to sd_device struct for initialized flash device.

RETURN VALUE
Number of sectors

LIBRARY
SDFLASH.LIB

sdspi_get _status_reg

int sdspi_get _status _reg(sd_device *sd, iInt * status);

DESCRIPTION
This function is called to execute protocol command 13 to retrieve the status register value of
the SD card.
PARAMETERS
sd Pointer to the device structure for the SD card.
status Pointer to variable that returns the status.

RETURN VALUE

0: Success, Card status placed in status
—-EI0: 1/O error

—ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

418 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_init_card

int sdspi_init_card(sd_device * sd);

DESCRIPTION

Initializes the SD card pointed to by sd. Function executes protocol command “1” which clears
HCS bit and activates the card’s initialization sequence.

PARAMETERS

sd Pointer to sd_device structure for the SD card.

RETURN VALUE

0: Success

-E10: 1/O error

—-EINVAL: Invalid parameter given
—-ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 419

http://www.rabbit.com

sdspi_initDevice

int sdspi_initDevice(int indx, sd_dev_interface * sd_dev);

DESCRIPTION

Initializes the SD card pointed to by sd_ dev and adds information about the cards interface to
the SD device array in the position pointed to by indx. Sets up the default block size of 512
bytes used by sector read/write functions. This function should be called before any calls to
other sdspi functions.

PARAMETERS
indx Index into the SD device array to add the card.
sd_dev Pointer to sd_dev_interface for the SD card.

RETURN VALUE

0: Success

-E10: 1/O error

—EINVAL.: Invalid parameter given
—~ENOMED IUM: No SD card in socket
-ESHAREDBUSY: SPI port busy

LIBRARY
SDFLASH.LIB

420 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_isWriting

int sdspi_isWriting(sd_device * dev);

DESCRIPTION
Returns 1 if the SD card is busy writing a sector.

PARAMETER

dev Pointer to initialized sd_device structure for the flash chip

RETURN VALUE

1: Busy
0: Ready, not currently writing

LIBRARY
SDFLASH.LIB

sdspi_notbusy

int sdspi_notbusy(int port);

DESCRIPTION

This function tests for a busy status from the SD card on the port given. It is assumed that the
card is already enabled.

PARAMETER

port The base address for the SD card's SPI port

RETURN VALUE

1: The card is not busy, write/erase has ended
0: The card is busy, write/erase in progress

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 421

http://www.rabbit.com

sdspi_print_dev

void sdspi_print_dev(sd_device * dev);
DESCRIPTION
Prints parameters from the SD device structure.

PARAMETER

dev Pointer to sd_dev i ce structure of the SD card.

LIBRARY
SDFLASH.LIB

422 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_process_command

int sdspi_process_command(sd_device *sd, SD_CMD_REPLY * cmd_reply,
int mode);

DESCRIPTION

This function sends the command placed in the cmd__rep 1y structure and retrieves a reply and
data (optional) as defined in the cmd__reply structure. Pointers to TX and RX buffers are re-
trieved from the cmd__reply structure and used for command transmission and reply/data re-
ception. Reply is parsed and placed in cmd_reply . reply. Errors encountered will give a
negative return value.

The SPI semaphore is obtained before the command is sent. The mode parameter controls
whether the semaphore will be released after command execution and reply/data reception. If
mode is zero, both semaphore and chip select are active on a successful return. An end com-
mand sequence and release of the semaphore must be handled by caller.

If mode is not 0, the semaphore will be released before returning. In addition, if mode is 2 then
an SD card reset is in progress. This enables the distinguishing of certain 1/O error conditions
that would normally be grouped with the —E10 error code and instead return the —-EAGAIN
error code, indicating reset retries should continue.

PARAMETER
sd Pointer to sd_device structure of the SD card.

cmd_reply Pointer to cmd_reply structure, which contains:

cmd - command to be executed

argument - arguments for the command
reply - storage for command reply
reply_size - size in bytes of expected reply
data_size - size in bytes of expected data
tx_buffer - pointer to TX buffer to use
rx_buffer - pointer to RX buffer to use

mode One of the following:

0 = SPI port semaphore should be retained.
1 = If SPI port to be released before return.

2 = Attempting SD card reset, otherwise same as mode “1”.
(Enables —~-EAGAIN return value.)

Dynamic C Functions rabbit.com 423

http://www.rabbit.com

sdspi_process _command (cont’d)

RETURN VALUE

0: Success

-E10: 1/O error

—EAGAIN: Allowable 1/O error during card reset
—-EINVAL: Invalid parameter given

—ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_read_sector

int sdspi_read_sector(sd_device * sd, unsigned long sector_number,
void * data_buffer);

DESCRIPTION
This function is called to execute protocol command 17 to read a 512 byte block of data from
the SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

sector_number The sector number to read.

data_buffer Pointer to a buffer for the 512 bytes read.

RETURN VALUE

0: Success

-E10: 1/O error

—EINVAL.: Invalid parameter given
—~ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

424 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_reset_card

int sdspi_reset_card(sd_device * sd);

DESCRIPTION

Resets the SD card pointed to by sd. Function executes protocol command 0 to force the card
to Idle mode. This command is sent multiple times to reset the SD card.

PARAMETER

sd Pointer to sd_dev i ce structure of the SD card.

RETURN VALUE

0: Success

-E10: 1/O error

—-EINVAL: Invalid parameter given
—-ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 425

http://www.rabbit.com

sdspi_sendingAP

int sdspi_sendingAP(sd_device * sd);

DESCRIPTION

Sends AP command 55 to set Alternate Command mode on the next command sent to the card.
This function does not release the port sharing semaphore unless an error is encountered.

PARAMETER

sd Pointer to sd_devi ce structure of the SD card.

RETURN VALUE

0: Success

-E10:1/O error

—-ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi_setLED

void sdspi_setLED(sd_device * sd, char state);

DESCRIPTION

This function sets the LED for the given SD card based on state. If state is 0, the LED is turned
off. If state is not zero, the LED is turned on.

PARAMETER
sd Pointer to sd_dev i ce structure of the SD card.
state The state to set the LED to: 0 = Off and Non-zero = On
LIBRARY

SDFLASH.LIB

426 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_set_block length

int sdspi_set_block length(sd_device * sd, int block length);

DESCRIPTION

This function executes protocol command 16 to set the block length for the SD card. The default
block length for SD cards is 512 bytes. Please note that sdspi_write_ sector() and
sdspi_read_sector () work on 512 byte blocks only. If you change the block size, these
functions will need to be modified, or you will need to execute commands directly through
sdspi_process_command() and internal write block and read block functions.

PARAMETER
sd Pointer to device structure of the SD card.

block _length The block size in bytes for the SD card.

RETURN VALUE

0: Success

-E10: 1/O error

—-EINVAL: Invalid parameter given
—~ENOMED IUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 427

http://www.rabbit.com

sdspi_WriteContinue

int sdspi_WriteContinue(sd_device * sd);

DESCRIPTION

This function completes the previously started write command to the SD card when non-block-
ing mode is enabled. It looks for the end of the busy signal from the card, then strobes the chip
select. This function should be called repeatedly until the -EBUSY code is not returned, at
which point the SPI port is freed. There is a timeout mechanism for the busy signal. If exceeded,
the port is freed and the -EIO error code is returned.

PARAMETERS

sd The device structure for the SD card.

RETURN VALUE

0: Success
—-E10: 1/0O error or timeout
-EBUSY: SD card is busy with write operation; call sdspi_WriteContinue() again

LIBRARY
SDFLASH.LIB

428 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_write_sector

int sdspi_write_sector(sd_device * sd, unsigned long sector_number,
char * data_buffer);

DESCRIPTION
This function is called to execute protocol command 24 to write a 512 byte block of data to the
SD card.

PARAMETER
sd Pointer to device structure of the SD card.

sector_number The sector number to write.

data_buffer Pointer to a buffer of 512 bytes to write.

RETURN VALUE

0: Success

—-EI0: 1/O error

-EACCES: Write protected block, no write access

—-EINVAL: Invalid parameter given

—ENOMED IUM: No SD card in socket

-ESHAREDBUSY: Shared SPI port busy

—-EBUSY: SD card is busy with write operation; call sdspi_WriteContinue() to com-
plete (only when SD_NON_BLOCK is defined)

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 429

http://www.rabbit.com

servo_alloc_table

void servo_alloc_table(int which, int entries);

DESCRIPTION

Allocate an xmem data area for servo statistics collection. This function should be called once
only (for each servo) at application startup time.

PARAMETERS
which Servo (O or 1)
entries Number of entries to allocate. Each entry is 8 bytes, and stores 4 integer
values. The maximum value for this parameter is 8190.
LIBRARY
SERVO.LIB
SEE ALSO

servo_graph, servo_read_table, servo_stats reset

servo_closedloop

void servo_closedloop(int which, int reset);

DESCRIPTION
Run specified servo in closed-loop (PID) mode.

PARAMETERS
which Servo (O or 1).
reset Whether to reset the current command list. The command list executes
even while in open loop mode (although it will have no visible effect in that
mode). If reset is non-zero, then the command list will be reset to empty
and the motor will halt at the current position.
LIBRARY
SERVO.LIB
SEE ALSO

servo_openloop, servo_torque

430 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_disable 0O

void servo_disable_0(void);

DESCRIPTION

Disable drive to the first servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The 1/O pin used for this function is specified by the macros:

#define SERVO_ENABLE_PORT O PGDR
#define SERVO_ENABLE_PORTSHADOW_O PGDRShadow
#define SERVO_ENABLE_PIN_O 6

and, optionally,

#define SERVO_ENABLE_DDR_O PGDDR
#define SERVO_ENABLE_DDRSHADOW_O PGDDRShadow
#define SERVO_ENABLE_ACTIVEHIGH_O

This function is limited to toggling the output pin. If enabling or disabling the servo motor re-
quires more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE_O vyyyy

where yyyy is the name of your own function (which is assumed to take no parameters and have
no return value)

LIBRARY
SERVO.LIB

SEE ALSO
servo_enable O

Dynamic C Functions rabbit.com

431

http://www.rabbit.com

servo_disable 1

void servo_disable_1(void);

DESCRIPTION

Disable drive to the second servo motor. This function only works if an auxiliary control signal
is connected to the motor driver. The 1/O pin used for this function is specified by the macros:

#define SERVO_ENABLE_PORT 1 PGDR
#define SERVO_ENABLE_PORTSHADOW_1 PGDRShadow
#define SERVO_ENABLE_PIN_1 7

and, optionally,

#define SERVO_ENABLE_DDR_1 PGDDR
#define SERVO_ENABLE_DDRSHADOW_1 PGDDRShadow
#define SERVO_ENABLE_ACTIVEHIGH_1

This function is limited to toggling the output pin. If enabling or disabling the servo motor re-
quires more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE_1 vyyyy

where yyyy is the name of your own function (which is assumed to take no parameters and have
no return value)

LIBRARY
SERVO.LIB

SEE ALSO
servo_enable 1

432 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_enable 0O

void servo_enable_0(void);

DESCRIPTION

Enable drive to the first servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The 1/O pin used for this function is specified by the macros:

#define SERVO_ENABLE_PORT O PGDR
#define SERVO_ENABLE_PORTSHADOW_O PGDRShadow
#define SERVO_ENABLE_PIN_O 6

and, optionally,

#define SERVO_ENABLE_DDR_O PGDDR
#define SERVO_ENABLE_DDRSHADOW_O PGDDRShadow
#define SERVO_ENABLE_ACTIVEHIGH_O

This function is limited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO_ENABLE_O XxXxxX

where xxxx is the name of your own function (which is assumed to take no parameters and have
no return value).

LIBRARY
SERVO.LIB

SEE ALSO
servo_disable O

Dynamic C Functions rabbit.com

433

http://www.rabbit.com

servo_enable 1

void servo_enable_1(void);

DESCRIPTION
Enable drive to the second servo motor. This function only works if an auxiliary control signal
is connected to the motor driver. The 1/O pin used for this function is specified by the macros:

#define SERVO_ENABLE_PORT 1 PGDR
#define SERVO_ENABLE_PORTSHADOW_1 PGDRShadow
#define SERVO_ENABLE_PIN_1 7

and, optionally,

#define SERVO_ENABLE_DDR_1 PGDDR
#define SERVO_ENABLE_DDRSHADOW_1 PGDDRShadow
#define SERVO_ENABLE_ACTIVEHIGH_1

This function is limited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO_ENABLE_1 XxXxX

where xxxx is the name of your own function (which is assumed to take no parameters and have
no return value).

LIBRARY
SERVO.LIB

SEE ALSO
servo_disable 1

434 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_gear

void servo_gear(int countO, int countl, int slaveO, int slavel);

DESCRIPTION

NOTE: this function is currently not efficient enough for production use (owing to use of long
multiplication and division). It is provided as an example of the use of callbacks from the ISR.

If two servos are in use, couple or cross-couple their positioning. This only works if
NUM_SERVOS is 2, and both servos are in closed loop mode.

There are four possible sub-modes of operation, which depend on the slave0/1 parameters.

slave0 slavel Operation

Non-gear mode: neither servo is slaved. This is the normal,
default, mode.

Second servo is slaved from first servo. For every ‘count0’
0 1 increments of the first servo's encoder, the second servo will be
moved ‘countl’ increments.

First servo is slaved from second servo. For every ‘countl’
1 0 increments of the second servo's encoder, the first servo will be
moved ‘count0' increments.

Both servos cross-coupled. Movement will only result from an
1 1 externally applied torque. This is a true simulation of
mechanical gearing.

Call this function with count0 or countl zero, or both slave0 and slavel zero, to exit from gear
mode. When a servo that was slaved is set to normal mode, its velocity is set to zero.

PARAMETERS
countO Encoder increment for the first servo which results from countl increments
of the second servo.
countl Encoder increment for the second servo which results from countO incre-

ments of the first servo.

Together, count0 and countl determine the gearing ratio. Neither value should be set to a mag-
nitude greater than about 500, to avoid internal arithmetic overflow. In any gear mode, the total
movement of either servo should be limited to less than about 2M counts in either direction from
the point at which gear mode was set. If a smaller range of movement is acceptable, then the
maximum of either count parameter may be increased proportionally. The value of
countO/countl or countl/countO should not have a magnitude greater than about 10 to avoid en-
coder quantization problems, especially in cross-coupled mode.

Dynamic C Functions rabbit.com 435

http://www.rabbit.com

servo_gear (cont’d)

slaveO 1 if first servo slaved to second, else zero.
slavel 1 if second servo slaved to first, else zero.
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_torque

436 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_graph

int servo_graph(int which, word start, word nlines, word samples,
word what, int low, int high);

DESCRIPTION

Draw ASCII-art graph of servo response. This is primarily intended for debugging. It should be
called after resetting the sample collection table using servo_stats_reset(), then exe-
cuting a movement whose response is to be graphed.

PARAMETERS

which Servo (O or 1)

start Starting sample number

nlines Number of lines (sample bins) in graph - vertical axis

samples Number of samples to cover (should be multiple of nlines)

what Which statistic to print: 0 is for error; 1 for error integral; 2 for error rate
(differential), 3 for PWM output setting. These may be customized to have
different meanings

low Low range of horizontal axis

high High range of horizontal axis

RETURN VALUE
0: OK
-1: error

LIBRARY
SERVO.LIB

SEE ALSO
servo_alloc_table, servo_read table, servo_stats reset

Dynamic C Functions rabbit.com 437

http://www.rabbit.com

=

servo_in

void servo_init(void);

DESCRIPTION

This function must be called once at the beginning of application code to initialize the servo li-
brary.

LIBRARY
SERVO.LIB

SEE ALSO

servo_stats reset, servo _alloc table, servo set coeffs,
servo_enable O

servo_millirpm2vcmd

long servo_millirpm2vemd(int which, long millirpm);

DESCRIPTION
Convert 1/1000 RPM units to velocity command value. Basic formula is:

SERVO _COUNT PER_REV_n - millirpm - 65536
60000 - SERVO_LOOP_RATE_HZ

Floating point is used to retain 24 bit precision.

vemd =

PARAMETERS
which Servo (0 or 1).
millirpm Input in units of 1/1000 RPM.

RETURN VALUE

Output in units suitable for command velocity setting i.e units of 1/65536 encoder counts per
ISR execution (sample).

LIBRARY
SERVO.LIB

SEE ALSO
servo_move_to, servo_set_vel, servo_set_pos

438 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_move_to

int servo_move_to(int which, long pos, long ticks, long accel_ticks,
long final_v);

DESCRIPTION

Move to new position, pos. Assumes current position is “cmd” and current velocity is “vemd”
(with the values of these read from the control structure at beginning of routine).

Each "tick™ represents the time interval between loop updates. This routine measures time in-
tervals in units of ticks.

accel_ticks (<= ticks) is the number of ticks allocated to acceleration/deceleration phase of
movement. The remaining part of the movement is performed at constant velocity. Acceleration
and deceleration are computed to be of the same magnitude at beginning and end of motion (but
may be opposite signs). final_v is the velocity to be achieved at end of movement. This routine
returns as soon as the necessary command list is installed for execution by the ISR. The move-
ment will not be completed until “ticks” ISR executions.

NB: if the average velocity (vt) required to complete the movement is greater than +/-16k counts
per tick, then the movement is stretched to a longer time interval so as to make the peak velocity
equal to the +/- 8k counts/tick (which is higher than any physical motor can follow). accel_ticks
is set to 16384 if it is over that (since rounding errors can accumulate over long periods of low
acceleration).

If this routine is called again before the previous motion is completed, then the previous motion
will be overridden by the new motion. This routine uses floating point, since the mathematics
are quite complex. It takes several milliseconds to execute, so should not be called to perform
motions which complete in less than, say, 50ms.

This routine does not attempt to control rate of change of acceleration ("jerk™ or d*3x/dt"3). It
approximates the required movement profile as parabolic (constant acceleration) and linear
(constant velocity) segments.

PARAMETERS
which Servo (0 or 1).
pos Position to be achieved at end of movement.
ticks Number of ISR executions (loop update rate) over which to complete the

movement. If less than 1, it is set to 1.

accel _ticks Number of ticks over which acceleration is to be applied. The remainder of
the interval, ticks - accel_ticks, is performed at constant velocity. If greater
than "ticks", it is set equal to "ticks".

final_v Final velocity to be achieved at end of movement.

Dynamic C Functions rabbit.com 439

http://www.rabbit.com

servo_move_to (cont’d)

RETURN VALUE

0: OK.
1: computed velocity is "extremely high™: time interval stretched to make velocity fit within al-
lowable fixed-point limits (i.e. 8192 encoder counts per sample).

LIBRARY
SERVO.LIB

SEE ALSO
servo_set _vel, servo_set pos, servo_millirpm2vcmd

servo_openloop

void servo_openloop(int which, word pwm);

DESCRIPTION

Run specified servo in open-loop mode (no PID control). Note that this bypasses dynamic cur-
rent-limiting (if any defined) so should be used with caution.

PARAMETERS
which Servo (0 or 1).
pwm Output PWM setting (0-1024). 0 indicates maximum reverse speed, 1024
is maximum forward speed. 512 is nominally zero speed (but this depends
on amplifier offset).
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_torque

440 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_qd _zero O

void servo_qd_zero_0(void);

DESCRIPTION

Reset the first servo encoder reading to zero. The servo motor is not moved; only the notion of
the current position is reset to zero. This should only be called when the servo is in open loop
mode.

LIBRARY
SERVO.LIB

SEE ALSO
servo_qd_zero 1

servo_qd zero 1

void servo_qd_zero_1 (void ;)

DESCRIPTION

Reset the second servo encoder reading to zero. The servo motor is not moved; only the notion
of the current position is reset to zero. This should only be called when the servo is in open loop
mode.

LIBRARY
SERVO.LIB

SEE ALSO
servo_qd_zero O

Dynamic C Functions rabbit.com 441

http://www.rabbit.com

servo_read_table

int servo_read_table(int which, word entry, word nent, int data[12]);

DESCRIPTION

Read one or more table entries, returning average, max and min of all samples in the specified
group starting at entry, for nent samples.

PARAMETERS
which Servo (O or 1)
entry First sample number
nent Number of entries starting at "entry"
data[1l2] Returned data: 3 sets of 4 contiguous entries. The first set (data[0]..data[3])

contains the average; the second set (data[4]..data[7]) contains the maxi-
mum; and the last set (data[8]..data[11]) contains the minimum. The ele-
ments of each set correspond with the table data: the first element is the
instantaneous error; the second is the error integral; the third is the error
rate; and the 4th is the PWM output. These may be customized to have dif-
ferent meanings.

RETURN VALUE
0: OK
1: no such entry or entries.

LIBRARY
SERVO.LIB

SEE ALSO
servo_alloc_table, servo_graph, servo_stats reset

442 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_set coeffs

void servo_set_coeffs(int which, int prop, int integral, int diff);

DESCRIPTION

Set the PID closed loop control coefficients. The normal sign for all coefficients should be pos-
itive in order to implement a stable control loop. See Technical Note 233 for details.

PARAMETERS
which Servo (O or 1)
prop Proportional coefficient
integral Integral ("reset™) coefficient
diff Derivative ("'rate") coefficient
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_openloop

Dynamic C Functions rabbit.com 443

http://www.rabbit.com

servo_set_pos

void servo_set_pos(int which, long pos, long vel);

DESCRIPTION

Move the specified servo motor to a specified position and set the specified velocity at that po-
sition. This cancels any move which is currently in effect.

PARAMETERS
which Servo (O or 1)
pos Position, as an encoder count
vel Velocity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo_millirpm2vemd().
LIBRARY
SERVO.LIB
SEE ALSO

servo_move_to, servo_set_vel, servo_millirpm2vcmd

444 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_set_vel

void servo_set_vel(int which, long vel);

DESCRIPTION
Move the specified servo motor at a constant velocity. This cancels any move that is currently
in effect.
PARAMETERS
which Servo (O or 1).
vel Velocity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo_millirpm2vemd().
LIBRARY
SERVO.LIB
SEE ALSO

servo_move_to, servo_set pos, servo_millirpm2vcmd

servo_stats_reset

void servo_stats_reset(Int which);

DESCRIPTION

Reset the statistics table. This is used immediately prior to a command movement, so that the
table is filled with the results of the movement command. Once reset, one table row is filled in
for each execution of the update loop (ISR driven). This continues until the table is full, or it is
reset again.

PARAMETER

which Servo (O or 1)

LIBRARY
SERVO.LIB

SEE ALSO
servo_graph, servo_read_table

Dynamic C Functions rabbit.com 445

http://www.rabbit.com

servo_torque

void servo_torque(int which, int torque);

DESCRIPTION

Run specified servo in open loop controlled torque mode. The torque is limited by the dynamic
current limit feature, if available.

PARAMETERS
which Servo (O or 1)
torque Amount of torque expressed as a fraction of the maximum permissible
torque, times 10,000. For example, to set the torque to 1/10 the maximum
value in the reverse direction, call servo_torque(0, -1000).
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_openloop

446 rabbit.com Dynamic C Functions

http://www.rabbit.com

serCheckParity

int serCheckParity(char rx_byte, char parity);

DESCRIPTION

This function is different from the other serial routines in that it does not specify a particular
serial port. This function takes any 8-bit character and tests it for correct parity. It will return
true if the parity of rx_byte matches the parity specified. This function is useful for checking
individual characters when using a 7-bit data protocol.

PARAMETERS
rx_byte The 8 bit character being tested for parity.
parity The character ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE

1: Parity of the byte being tested matches the parity supplied as an argument.
O: Parity of the byte does not match.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com

447

http://www.rabbit.com

serXclose

void serXclose(); /7* where X is A-F */

DESCRIPTION
Disables serial port X. This function is non-reentrant.

The functions serEclose() and serFclose() may be used with the Rabbit 3000 and
Rabbit 4000.

LIBRARY
RS232.LIB

serxXdatabits

void serXdatabits (state); /* where X is A-F */

DESCRIPTION

Sets the number of data bits in the serial format for this channel. Currently seven or eight bit
modes are supported. A call to serXopen() must be made before calling this function. This
function is non-reentrant.

The functions serEdatabits() and serFdatabits() may be used with the Rabbit
3000 and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXdatabits(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS
state An integer indicating what bit mode to use. It is best to use one of the mac-
ros provided for this:
* PARAM_7BIT - Configures serial port to use 7 bit data.
» PARAM_8BIT - Configures serial port to use 8 bit data (default condi-
tion).
LIBRARY
RS232_LI1B

448 rabbit.com Dynamic C Functions

http://www.rabbit.com

serxXdmaOff

int serXdmaOff(void); /* where X is A-F */

DESCRIPTION
Stops DMA transfers and unallocates the channels. Restarts the serial interrupt capability.
Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the function prototype
is: serXdmaOff(int port), where “port” is one of the macros SER_PORT_A through
SER_PORT_F.

RETURN VALUE

0: Success
DMA Error codes: Error

LIBRARY
RS232.LIB

SEE ALSO
serxXdmaOn

Dynamic C Functions rabbit.com 449

http://www.rabbit.com

serxXdmaOn

int serXdmaOn(int tcmask, int rcmask); /* where X is A-F */

DESCRIPTION

Enables DMA for serial send and receive. This function should be called directly after
serXopen().

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the function prototype
is: serXdmaOn(int port, ...), where “port” is one of the macros SER_PORT _A through
SER_PORT_F.

Important Flow Control Note:
Because the DMA flowcontrol uses the external request feature, only two serial ports can use
DMA flowcontrol at a time. For the CTS pin, one serial port can use PD2, PE2, or PE6, and the
other can use PD3, PE3 or PE7.

How DMA Serial Works:

DMA Transmit:

When a serial function is called to transmit data, a DMA transfer begins. The length of that
transfer is either the length requested, or the rest of the transmit buffer size from the current po-
sition. An interrupt is fired at the end of the transmit at which time another transmit is set up if
more data is ready to go.

DMA Receive:

When serXdmaOn () is called, a continuous chain of DMA transfers begins sending any data
received on the serial line to the circular buffer. With flowcontrol on, there is an interrupt after
each segment of the data transfer. At that point, if receiving another segment would overwrite
data, the RTSoff function is called.

For more information see the description at the beginning of RS232 . L 1B.

PARAMETERS
tcmask Channel mask for DMA transmit. Use DMA_CHANNEL _ANY to choose
any available channel.
rcmask Channel mask for DMA receive. Use DMA_CHANNEL_ANY to choose any

available channel.

RETURN VALUE
DMA error code or O for success

LIBRARY
RS232.LIB

SEE ALSO
serxXdmaOff

450 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXflowcontrolOff

void serXflowcontrolOFf(void); /* where X is A-F */

DESCRIPTION
Turns off hardware flow control for serial port X. A call to serXopen () must be made before
calling this function. This function is non-reentrant.

The functions serEflowcontrolOff() and serFflowcontrolOff() may be used
with the Rabbit 3000 and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXflowcontrolOff(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

LIBRARY
RS232_LIB

Dynamic C Functions rabbit.com 451

http://www.rabbit.com

serXflowcontrolOn

void serXflowcontrolOn(void); /* where X is A-F */

DESCRIPTION

Turns on hardware flow control for channel X. This enables two digital lines that handle flow
control, CTS (clear to send) and RTS (ready to send). CTS is an input that will be pulled active
low by the other system when it is ready to receive data. The RTS signal is an output that the
system uses to indicate that it is ready to receive data; it is driven low when data can be received.
A call to serXopen() must be made before calling this function.

This function is non-reentrant.

The functions serEflowcontrolOn() and serFflowcontrolOn() may be used with
the Rabbit 3000 and Rabbit 4000.

If pins for the flow control lines are not explicitly defined, defaults will be used and compiler
warnings will be issued. The locations of the flow control lines are specified using a set of 5

macros.

SERX_RTS_PORT Data register for the parallel port that the RTS line is on. e.g.
PCDR

SERA RTS_SHADOW Shadow register for the RTS line's parallel port. e.g. PCDRShad-
ow

SERA RTS BIT The bit number for the RTS line

SERA_CTS_PORT Data register for the parallel port that the CTS line is on

SERA _CTS_BIT The bit number for the CTS line

LIBRARY
RS232_LIB

452 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXgetc

int serXgetc(void); /* where X is A-F */

DESCRIPTION
Get next available character from serial port X read buffer. This function is non-reentrant.

The functions serEgetc() and serkFgetc() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXgetc(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE

Success: the next character in the low byte, O in the high byte.
Failure: -1, which indicates either an empty or a locked receive buffer.

LIBRARY
RS232_LIB

EXAMPLE

// echoes characters
main() {
int c;
serAopen(19200) ;
while (1) {
if ((c = serAgetc()) = -1) {
serAputc(c);
}
¥

serAclose()

Dynamic C Functions rabbit.com

453

http://www.rabbit.com

serXgetError

int serXgetError(void); /* where X is A-F */

DESCRIPTION

Returns a byte of error flags, with bits set for any errors that occurred since the last time this
function was called. Any bits set will be automatically cleared when this function is called, so
a particular error will only be reported once. This function is non-reentrant.

The flags are checked with bitmasks to determine which errors occurred. Error bitmasks:

= SER_PARITY_ERROR
= SER_OVERRUN_ERROR

The functions serEgetError () and serFgetError () may be used with the
Rabbit 3000 and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXgetError(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE
The error flags byte.

LIBRARY
RS232.LIB

454 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXopen

int serXopen(long baud); /* where X is A-F */

DESCRIPTION
Opens serial port X. This function is non-reentrant.

The user must define the buffer sizes for each port being used with the buffer size macros
XINBUFSIZE and XOUTBUFSIZE. The values must be a power of 2 minus 1, e.g.

#define XINBUFSIZE 63
#define XOUTBUFSIZE 127

Defining the buffer sizes to 2" - 1 makes the circular buffer operations very efficient. If a value
not equal to 2"- 1 is defined, a default of 31 is used and a compiler warning is given.

The functions serEopen() and serFopen() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: The default pin setup of Serial Port E uses parallel port C pins which conflict with
the programming port. Opening serial port E with the default settings while in debug mode
will therefore kill PC host/target communication.

The user must #define the following if not using the default (PCDR) settings:

SERE_TXPORT define to PEDR or PDDR
SERE_RXPORT define to PEDR or PDDR

Note: The alternate pins on parallel port D can be used for serial port B by defining
SERB_USEPORTD at the beginning of a program. See the section on parallel port D in the
Rabbit documentation for more detail on the alternate serial port pins.

For Rabbit 4000 Users: To use DMA for transfers, call serXdmaOn() after this function.

PARAMETERS

baud Bits per second (bps) of data transfer. Note that the baud rate must be
greater than or equal to the peripheral clock frequency divided by 8192.

RETURN VALUE

1: The Rabbit's bps setting is within 5% of the input baud.
0: The Rabbit's bps setting differs by more than 5% of the input baud.

LIBRARY
RS232.LIB

SEE ALSO

serXgetc, serXpeek, serXputs, serXwrite, cof_serXgetc,
cof_serXgets, cof_serXread, cof_serXputc, cof _serXputs,
cof_serXwrite, serXclose

Dynamic C Functions rabbit.com 455

http://www.rabbit.com

serXparity

void serXparity(int parity_mode); /* where X is A-F */

DESCRIPTION

Sets parity mode for channel X. A call to serXopen () must be made before calling this func-
tion.

Parity generation for 8-bit data can be unusually slow due to the current method for generating
high 9th bits. Whenever a 9th high bit is needed, the UART is disabled for approximately 10
baud times to create a long stop bit that should be recognized by the receiver as a high 9th bit.

The long delay is imposed because we are using the serial port itself to handle timing for the
delay. Creating a shorter delay would the require use of some other timer resource.

This function is non-reentrant.

The functions serEparity () and serFparity() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXparity(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS

parity_mode An integer indicating what parity mode to use. It is best to use one of the
macros provided:

* PARAM_NOPARITY - Disables parity handling (default).

PARAM_OPARITY - Odd parity; parity bit set to “0” if odd number of
1’s in data bits.

PARAM_EPARITY - Even parity; parity bit set to “1” if even number of
1’s in data bits.

PARAM_MPARITY - Mark parity; parity bit always set to logical 1.
(Rabbit 4000 only)

PARAM_SPARITY - Space parity; parity bit always set to logical 0.
(Rabbit 4000 only)

PARAM_2STOP - 2 stop bits.

From a logical standpoint, the first three of these PARAM__ macros cannot
be combined, but even PARAM_2STOP must stand alone due to limita-
tions in the UART hardware that will not allow parity bits and extra stop
bits.

LIBRARY
RS232.LIB

456 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXpeek

int serXpeek(void); /* where X is A-F */

DESCRIPTION
Returns first character in input buffer X, without removing it from the buffer. This function is
non-reentrant.

The functions serEpeek () and serFpeek () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXpeek(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE

An integer with first character in buffer in the low byte.
-1 if the buffer is empty.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 457

http://www.rabbit.com

serXputc

int serXputc(char ¢); /7* where X is A-F */

DESCRIPTION
Writes a character to serial port X write buffer. This function is non-reentrant.

The functions serEputc() and serFputc () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXputc(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS
C Character to write to serial port X write buffer.

RETURN VALUE
O if buffer locked or full, 1 if character sent.

LIBRARY
RS232.LIB

EXAMPLE

main() { // echoes characters
int c;
serAopen(19200) ;
while (1) {
if ((c = serAgetc()) !'= -1) {
serAputc(c);
}
}

serAclose();

458 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXputs

int serXputs(char * s); /* where X is A-F */

DESCRIPTION
Calls serXwrite(s, strlen(s)); does not write null terminator. This function is non-
reentrant.

The functions serEputs () and serFputs () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXputs(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS

s Null terminated character string to write

RETURN VALUE
The number of characters actually sent from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null-terminated string of characters, repeatedly
main() {
const static char s[] = "Hello Rabbit";
serAopen(19200);
while (1) {
serAputs(s);

serAclose();

Dynamic C Functions rabbit.com 459

http://www.rabbit.com

serXrdFlush

void serXrdFlush(void); /* where X is A-F */

DESCRIPTION
Flushes serial port X input buffer. This function is non-reentrant.

The functions serErdFlush() and serFrdFlush() may be used with the Rabbit 3000
and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdFlush(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

LIBRARY
RS232.LIB

serXrdFree

int serXrdFree(void); /* where X is A-F */

DESCRIPTION
Calculates the number of characters of unused data space. This function is non-reentrant.

The functions serErdFree () and serFrdFree() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdFree(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE
The number of chars it would take to fill input buffer X.

LIBRARY
RS232_LIB

460 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXrdUsed

int serXrdUsed(void); /* where X is A-F */

DESCRIPTION

Calculates the number of characters ready to read from the serial port receive buffer. This func-
tion is non-reentrant.

The functions serErdUsed () and serFrdUsed() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXrdUsed(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE
The number of characters currently in serial port X receive buffer.

LIBRARY
RS232_LIB

Dynamic C Functions rabbit.com 461

http://www.rabbit.com

serXread

int serXread(void * data, int length, unsigned long tmout);
/* where X is A-F */

DESCRIPTION
Reads Iength bytes from serial port X or until tmout milliseconds transpires between bytes.
The countdown of tmout does not begin until a byte has been received. A timeout occurs im-
mediately if there are no characters to read. This function is non-reentrant.

The functions serEread () and serFread () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXread(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS
data Data structure to read from serial port X
length Number of bytes to read
tmout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE
The number of bytes read from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a blocks of characters
main() {
int n;
char s[16];
serAopen(19200);
while (1) {
if ((n = serAread(s, 15, 20)) > 0) {
serAwrite(s, n);

}

serAclose();

462 rabbit.com Dynamic C Functions

http://www.rabbit.com

serxXxwrFlush

void serXwrFlush(void); /* where X is A-F */

DESCRIPTION

Flushes serial port X transmit buffer, meaning that the buffer contents will not be sent. This
function is non-reentrant.

The functions serEwrFlush() and serFwrFlush() may be used with the Rabbit 3000
and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrFlush(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

LIBRARY
RS232_LIB

serXwrFree

int serXwrFree(void); /* where X is A-F */

DESCRIPTION
Calculates the free space in the serial port transmit buffer. This function is non-reentrant.

The functions serEwrFree () and serFwrFree() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrFree(port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE
The number of characters the serial port transmit buffer can accept before becoming full.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 463

http://www.rabbit.com

serxwrite

int serXwrite(void * data, int length); /7* X is A-F */

DESCRIPTION
Transmits length bytes to serial port X. This function is non-reentrant.

The functions serEwrite() and serFwrite() may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrite(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS
data Data structure to write to serial port X
length Number of bytes to write

RETURN VALUE
The number of bytes successfully written to the serial port.

LIBRARY
RS232_LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Rabbit™;
serAopen(19200) ;
while (1) {
serAwrite(s, strlen(s));

}

serAclose();

}

464 rabbit.com Dynamic C Functions

http://www.rabbit.com

serxXwrUsed

int serXwrUsed(void); /* where X is A-F */

DESCRIPTION
Returns the number of characters in the output buffer. This function is non-reentrant.

The functions serErdUsed () and serFrdUsed () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized for
all serial ports. Instead of substituting for “X” in the function name, the prototype of the
generalized function is: serXwrUsed(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE
The number of characters currently in the output buffer.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 465

http://www.rabbit.com

set

void set(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory address to 1. bit may be
from 0 to 31. This is equivalent to the following expression, but more efficient:

*(long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

LIBRARY
UTIL.LIB

SEE ALSO
SET

SET

void SET(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory address to 1. bit may be
from 0 to 31. This is equivalent to the following expression, but more efficient:

*(long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where 0 represents the least significant bit.

LIBRARY
UTIL.LIB

SEE ALSO
set

466 rabbit.com Dynamic C Functions

http://www.rabbit.com

set32kHzDivider

void set32kHzDivider(int setting);

DESCRIPTION

Sets the expanded 32kHz oscillator divider for the Rabbit 3000 processor. This function does
not enable running the 32kHz oscillator instead of the main clock. This function will affect the
actual rate used by the processor when the 32kHz oscillator has been enabled to run by a call to
use32kHzO0sc().

This function is not task reentrant.

PARAMETER
setting 32kHz divider setting. The following are valid:
* 0SC32D1V_1 - don't divide 32kHz oscillator
» 0SC32DI1V_2 - divide 32kHz oscillator by two
» 0SC32D1V_4 - divide 32kHz oscillator by four
* 0SC32D1V_8 - divide 32kHz oscillator by eight
» 0SC32DI1V_16 - divide 32kHz oscillator by sixteen
LIBRARY
SYS.LIB
SEE ALSO

useClockDivider, useClockDivider3000, useMainOsc, use32kHzOsc

Dynamic C Functions rabbit.com 467

http://www.rabbit.com

setClockModulation

void setClockModulation(int setting);

DESCRIPTION

Changes the setting of the Rabbit 3000 CPU clock modulation. Calling this function will force
a 500 clock delay before the setting is changed to ensure that the previous modulation setting
has cleared before the next one is set. See the Rabbit 3000 Microprocessor User's Manual for
more details about clock modulation for EMI reduction.

PARAMETER
setting Clock modulation setting. Allowed values are:
* 0 =no modulation
1 =weak modulation
¢ 2 =strong modulation
LIBRARY
SYS.LIB

468 rabbit.com Dynamic C Functions

http://www.rabbit.com

set_cpu_power_mode

int set_cpu_power_mode(int mode, char clkDoubler, char
shortChipSelect);

DESCRIPTION

Sets operating power of the controller. Suspend serial communication and other data transmis-
sion activity prior to calling this function, which sets higher priority interrupt while switching
clock frequencies.

This function is non-reentrant.

PARAMETERS

mode Mode operation. Use the following table values below. (The higher the val-
ue the lower the power consumption of controller.)

Mode Description Comments

1 Cclk=Pclk=MainOsc Debug capable

2 Cclk=Pclk=MainOsc/2 Debug capable (19200 baud)
3 Cclk=Pclk=MainOsc/4 Debug capable (9600 baud)
4 Cclk=Pclk=MainOsc/6

5 Cclk=Pclk=MainOsc/8

Periodic Interrupt disabled, so

6 Cclk=Pclk= 32.768KHz call hitwd()

Periodic Interrupt disabled, so

7 Cclk=Pclk=32KHz/2=16.384KHz call hitwd()

Periodic Interrupt disabled, so

8 Cclk=Pclk=32KHz/4 =8.192KHz call hitwd()

Periodic Interrupt disabled, so

9 Cclk=Pclk=32KHz/8=4.096 KHz call hitwd()

Periodic Interrupt disabled, so

10 Cclk=Pclk=32kHz/16 =2.048KHz call hitwd()

Dynamic C Functions rabbit.com 469

http://www.rabbit.com

set_cpu_power_mode (cont’d)

clkDoubler Clock doubler setting: CLKDOUBLER_ON or CLKDOUBLER_OFF.

CPU will operate at half selected speed when turned off. This param-
eter only affects main oscillator modes, not 32 kHZ oscillator modes.
Turning Clock doubler off reduces power consumption.

shortChipSelect Short Chip Select setting. Use SHORTCS_OFF, or SHORTCS_ON.

Note: When short chip select is on, make sure that interrupts are dis-

abled during I/O operations. Turning Short Chip Select on may

reduce power consumption. See the Rabbit processor manual for

more information regarding chip selects and low power operation.
RETURN VALUE

0: valid parameter
-1: invalid parameter

LIBRARY

low_power.lib

470 rabbit.com Dynamic C Functions

http://www.rabbit.com

setjmp

int setjmp(jmp_buf env);

DESCRIPTION

Store the PC (program counter), SP (stack pointer) and other information about the current state
into env. The saved information can be restored by executing longjmp ().

Note: you cannot use setjmp() to move out of slice statements, costatements, or
cofunctions.

Typical usage:
switch (setjmp(e)) {

case O: // firsttime
TO; /7 try to execute f(), may call longjmp()
break; // if we get here, f() was successful
case 1: // to get here, f() called longjmp()
/* do exception handling */
break;
case 2: // similar to above, but different exception code
by
O {
g0
}
90 {
longjmp(e,2); // exception code 2, jump to setjmp() statement,
// setjmp() returns 2, so execute
// case 2 in the switch statement
}
PARAMETERS
env Information about the current state

RETURN VALUE

Returns zero if it is executed. After longjmp () is executed, the program counter, stack point-
er and etc. are restored to the state when setjmp () was executed the first time. However, this
time setjmp () returns whatever value is specified by the longjmp () statement.

LIBRARY
SYS.LIB

SEE ALSO
longjmp

Dynamic C Functions rabbit.com 471

http://www.rabbit.com

SetSerialTATxRValues

long SetSerialTATxRValues(long bps, char *divisor, int tatXr);

DESCRIPTION

Sets up the possibly shared serial timer (TATXR) resources required to achieve, as closely as
possible, the requested serial bps rate. The algorithm attempts to find, when necessary and if
possible, the lowest value for the TAT1R that will precisely produce the requested serial bps
rate. For this reason, an application that requires the TAT1R to be shared should generally first
set up its usage with (1) the most critical timer Al cascade rate, or (2) the lowest timer Al cas-
cade rate. That is, consider setting up the most critical stage (PWM, servo, triac, ultra-precise
serial rate, etc.) first, else set up the slowest usage (often, the lowest serial rate) first.

Note that this function provides no TATXR resource sharing protection for an application that
uses any of the individual TATXR resources either directly or indirectly. For example, this func-
tion affords no protection to an application that sets a direct usage TAT7R timer interrupt and
also opens serial port D such that TAT7R is used to set the serial data rate.

A run time error occurs if parameter(s) are invalid. Also, this function is not reentrant.

PARAMETERS
bps The requested serial bits per second (BPS, baud) rate.
divisor An optional pointer to the caller's serial timer divisor variable. If the caller
is not interested in the actual serial timer (TATXR) divisor value that is set
by this function, then NULL may be passed.
tatXr The TATXR for the serial timer whose value(s) are to be set. Use exactly

one of the following macros:

» TAT4R for serial port A
TAT5R for serial port B
TAT6R for serial port C
TAT7R for serial port D
TAT2R for serial port E
TAT3R for serial port F

RETURN VALUE
The actual serial rate BPS (baud) setting that was achieved.

LIBRARY
sys.lib

SEE ALSO
TAT1R_SetValue

472 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectExtern2000

unsigned SetVectExtern2000(int priority, void * isr);

DESCRIPTION

Sets up the external interrupt table vectors for external interrupts 0 and 1. This function should
be used for Rabbit 2000 processors revision 1Q2 due to a bug in the chip's interrupt handling.
(See Technical Note 301, “Rabbit 2000 Microprocessor Interrupt Issue,” on the Rabbit Semi-
conductor website for more information.)

Once this function is called, both external interrupts 0 and 1 should be enabled with priority lev-
els set higher than any currently running interrupts. (All system interrupts in the BIOS run at
interrupt priority 1.) The interrupt priority is set via the control register I0OCR for external inter-
rupt 0 and 11CR for external interrupt 1.

The actual priority used by the interrupt service routine (ISR) is passed to this function.

PARAMETERS
priority Priority the ISR should run at. Valid values are 1, 2 or 3.
isr ISR handler address. Must be a root address.

RETURN VALUE
Address of vector table entry, or zero if priority is not valid.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectlIntern, GetVectlntern

Dynamic C Functions rabbit.com

473

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbit.com

SetVectExtern3000

unsigned SetVectExtern3000(int interruptNum, void * isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 3000 and some
versions of the Rabbit 2000. All Rabbit interrupts use jump vectors. See SetVectintern()
for more information.

PARAMETERS
interruptNum External interrupt number. 0 and 1 are the only valid values.

isr ISR handler address. Must be a root address.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectlIntern, GetVectlIntern

474 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectExtern4000

unsigned SetVectExtern4000(int interruptNum, void * isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 4000, Rabbit 3000
and some versions of the Rabbit 2000. All Rabbit interrupts use jump vectors. See
SetVectIntern() for more information.

PARAMETERS
interruptNum External interrupt number. 0 and 1 are the only valid values.

isr ISR handler address. Must be a root address.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectlntern, GetVectlIntern

Dynamic C Functions rabbit.com

475

http://www.rabbit.com

SetVectlntern

unsigned SetVectintern(int vectNum, void * isr);

DESCRIPTION

Sets an internal interrupt table entry. All Rabbit interrupts use jump vectors. This function writes
a jp instruction (0xC3) followed by the 16 bit ISR address to the appropriate location in the
vector table. The location in RAM of the vector table is determined and set by the BIOS auto-
matically at startup. The start of the table is always on a 0x100 boundary.

It is perfectly permissible to have ISRs in xmem and do long jumps to them from the vector ta-
ble. It is even possible to place the entire body of the ISR in the vector table if it is 16 bytes long
or less, but this function only sets up jumps to 16 bit addresses.

The following table shows the vectNum value for each peripheral or RST. The offset into the
vector table is also shown. The following vectors are valid for all Rabbit processors.

Peripheral or RST vectNum Vector Table Offset
Periodic interrupt 0x00 0x00
RST 10 instruction 0x02 0x20
RST 38 instruction 0x07 0x70
Slave Port 0x08 0x80
Timer A 0x0A 0xAO0
Timer B 0x0B 0xBO
Serial Port A 0x0C 0xCO
Serial Port B 0x0D 0xDO
Serial Port C O0x0E OxEO
Serial Port D OxOF 0xFO

The following vectors are valid starting with the Rabbit 3000.

Peripheral or RST vectNum Vector Table Offset
Input Capture 0x1A 0x01A0
Quadrature Encoder 0x19 0x0190
Serial port E 0x1C 0x01CO
Serial port F 0x1D 0x01DO

476 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectintern (cont’d)

The following vectors are valid starting with the Rabbit 3000 Revision 1.

Peripheral or RST vectNum Vector Table Offset
Pulse Width Modulator 0x17 0x0170
Secondary Watchdog 0x01 0x10

The following vectors are valid starting with the Rabbit 4000.

Peripheral or RST vectNum Vector Table Offset
Timer C Ox1F O0x01FO
Network Port A Ox1E 0x01EO

The following three RSTs are included for completeness, but should not be set by the user as
they are used by Dynamic C.

Peripheral or RST vectNum Vector Table Offset
RST 18 instruction 0x03 0x30
RST 20 instruction 0x04 0x40
RST 28 instruction 0x05 0x50

PARAMETERS
vectNum

ISr

RETURN VALUE

Address of vector table entry, or zero if vectNum is not valid.

LIBRARY
SYS.LIB

SEE ALSO

Interrupt number. See the above table for valid values.

ISR handler address. Must be a root address.

GetVectExtern2000, SetVectExtern2000, GetVectlntern

Dynamic C Functions

rabbit.com

477

http://www.rabbit.com

st _getPageCount

long sf_getPageCount(sf_device * dev);
DESCRIPTION
Return number of pages in a flash device.

PARAMETER

dev Pointer to s¥_device struct for initialized flash device.

RETURN VALUE
Number of pages.

LIBRARY
SFLASH.LIB

st _getPageSize

unsigned int sf _getPageSize(sf_device * dev);
DESCRIPTION
Return size (in bytes) of a page on the current flash device.

PARAMETER

dev Pointer to s¥_device struct for initialized flash device.

RETURN VALUE
Bytes in a page.

LIBRARY
SFLASH.LIB

478 rabbit.com Dynamic C Functions

http://www.rabbit.com

st Init

int st _init(void);

DESCRIPTION
Initializes serial flash chip. This function must be called before the serial flash can be used. Cur-
rently supported devices are:

» AT45DB041
» AT45DB081
» AT45DB642
» AR45DB1282

Note: This function blocks and only works on boards with one serial flash device.

RETURN VALUE

0 for success

-1 if no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com 479

http://www.rabbit.com

st _initDevice

int st_initDevice(sf_device * dev,
int cs_pin);

DESCRIPTION

Replaces sT_init().

int cs_port, char * cs_shadow,

The function sTspi_init() must be called before any calls to this function. Initializes serial
flash chip. This function must be called before the serial flash can be used. Currently supported

devices are:

» AT45DB041
» AT45DB081
» AT45DB642
» AR45DB1282

PARAMETERS

dev

Cs_port
cs_shadow
cs_pin

RETURN VALUE
0 for success

Pointer to an empty s¥_devi ce struct that will be filled in on return. The

struct will then act as a handle for the device.

1/0O port for the active low chip select pin for the device.

Pointer to the shadow variable for cs_port.

1/0 port pin number for the chip select signal.

-1if no flash chip detected
-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

480

rabbit.com

Dynamic C Functions

http://www.rabbit.com

st _isWriting

int st_isWriting(sf_device * dev);
DESCRIPTION
Returns 1 if the flash device is busy writing to a page.
PARAMETER
dev Pointer to s¥_device struct for initialized flash device

RETURN VALUE

1 busy
0 ready, not currently writing

LIBRARY
SFLASH.LIB

st _pageToRAM

int st_pageToRAM(long page);

DESCRIPTION

Command the serial flash to copy the contents of one of its flash pages into its RAM buffer.

Note: This function blocks and only works on boards with one serial flash device.
PARAMETER
page The page to copy.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com

481

http://www.rabbit.com

st RAMToPage

int sf_RAMToPage(long page);

DESCRIPTION
Command the serial flash to write its RAM buffer contents to one of the flash memory pages.

Note: This function blocks and only works on boards with one serial flash device.
PARAMETER

page The page to which the RAM buffer contents will be written t

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

482 rabbit.com Dynamic C Functions

http://www.rabbit.com

st readDeviceRAM

int sf_readDeviceRAM(sf_device * dev, long buffer, int offset,
int len, int flags);

DESCRIPTION
Read data from the RAM buffer on the serial flash chip into an xmem buffer.

PARAMETERS
dev Pointer to s¥_device struct for initialized flash device.
buffer Address of an xmem buffer.
offset The address in the serial flash RAM to start reading from.
len The number of bytes to read.
flags Can be one of the following:

SF_BITSREVERSED - Reads the data in bit reversed order from the flash
chip. This improves speed, but the data must have been also written in re-
versed order (see sf XWriteRAM)

SF_RAMBANKZ (default) - Reads from the first RAM bank on the flash de-
vice
SF_RAMBANK?2 - Reads from the alternate RAM bank on the flash device

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com 483

http://www.rabbit.com

st _readPage

int sf_readPage(sf_device * dev, int bank, long page);

DESCRIPTION

Replaces sT_pageToRAM().

Command the serial flash to copy from one of its flash pages to one of its RAM buffers.

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to s¥_device struct for initialized flash device.

Which RAM bank to write the data to. For Atmel 45DBxxx devices, this
can be 1 or 2.

The page to read from.

484

rabbit.com Dynamic C Functions

http://www.rabbit.com

st readRAM

int sf_readRAM(char * buffer, int offset, int len);

DESCRIPTION
Read data from the RAM buffer on the serial flash chip.

Note: This function blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to character buffer to copy data into.
offset Address in the serial flash RAM to start reading from
len Number of bytes to read

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com

485

http://www.rabbit.com

st _writeDeviceRAM

int st _writeDeviceRAM(sf_device * dev, long buffer, int offset,
int len, int flags);

DESCRIPTION
Write data to the RAM buffer on the serial flash chip from a buffer in xmem.

PARAMETER
dev Pointer to s¥_device struct for initialized flash device.
buffer Pointer to xmem data to write into the flash chip RAM.
offset The address in the serial flash RAM to start writing at.
len The number of bytes to write.
flags Can be one of the following:

» SF_BITSREVERSED - Allows the data to be written to the flash in re-
verse bit order. This improves speed, and works fine as long as the data
is read back out with this same flag.

Ignored on R4000 based cores, but reserved for legacy code support.

* SF_RAMBANK1 (default) - Writes to the first RAM bank on the flash de-
vice
» SF_RAMBANK?2 - Writes to the alternate RAM bank on the flash device
RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

486 rabbit.com Dynamic C Functions

http://www.rabbit.com

st _writePage

int sf_writePage(sf _device * dev, int bank, long page);

DESCRIPTION

Replaces sF_RAMToPage().

Command the serial flash to write its RAM buffer contents to one of its flash memory pages.
Check for completion of the write operation using sT_isWriting().

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to s _device struct for initialized flash device.

Which RAM bank to write the data from. For Atmel 45DBxxx devices, this
canbelor?2

The page to write the RAM buffer to

Dynamic C Functions

rabbit.com

487

http://www.rabbit.com

st _writeRAM

int sf_writeRAM(char * buffer, int offset, int len);

DESCRIPTION
Write data to the RAM buffer on the serial flash chip.

Note: This function blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to data that will be written the flash chip RAM.
offset Address in the serial flash RAM to start writing at.
len Number of bytes to write.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

=

sfspi_in

int sfspi_init(void);

DESCRIPTION
Initialize SPI driver for use with serial flash. This must be called before any calls to
st _initDevice().

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

488 rabbit.com Dynamic C Functions

http://www.rabbit.com

float sin (float x);

DESCRIPTION
Computes the sine of x.
Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

X Angle in radians.

RETURN VALUE
Sine of Xx.

LIBRARY
MATH.LIB

SEE ALSO
sinh, asin, cos, tan

sinh

float sinh(float x);

DESCRIPTION
Computes the hyperbolic sine of x. This functions takes a unitless number as a parameter and
returns a unitless number.

PARAMETERS

X Value to compute.

RETURN VALUE
The hyperbolic sine of x.
If x > 89.8 (approx.), the function returns INF and signals a range error. If x <—89.8 (approx.),
the function returns —INF and signals a range error.
LIBRARY
MATH.LIB

SEE ALSO
sin, asin, cosh, tanh

Dynamic C Functions rabbit.com 489

http://www.rabbit.com

snprintf

int snprintf(char * buffer, int len, char * format, ...);

DESCRIPTION

This function takes a string (pointed to by Format), arguments of the format, and outputs the
formatted string to the buffer pointed to by buffer. snprintf() will only output up to
1en characters. The user should make sure that:

* there are enough arguments after format to fill in the format parameters in the format string
* the types of arguments after Format match the format fields in Format

For example,
snprintf(buffer, BUF_LEN, "%s=%x","variable x",256);

puts the string “variable x=100" into buffer.

A complete list of valid conversion specifiers (%d, %s, etc.) can be found in the description for
printf() under Dynamic C Conversion Specifiers.

The macro STDIO_DISABLE_FLOATS can be defined if it is not necessary to format floating
point numbers. If this macro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Location of formatted string.
len The maximum length of the formatted string.
format String to be formatted.

- Format arguments.

RETURN VALUE

The number of characters written. If the output is truncated due to the Ien parameter, then this
function returns the number of characters that would have been written had there been enough
space.

LIBRARY
STDIO.LIB

SEE ALSO
printf, sprintf

490 rabbit.com Dynamic C Functions

http://www.rabbit.com

SPlinit

void SPlinit(void);

DESCRIPTION

Initialize the SPI port parameters for a serial interface only. This function does nothing for a par-
allel interface. A description of the values that the user may define before the #use SPI1.LIB
statement is found at the top of the library Lib\Spi\Spi . 11ib.

LIBRARY
SPI.LIB

SEE ALSO
SPIRead, SPIWrite, SPIWrRd

Dynamic C Functions rabbit.com 491

http://www.rabbit.com

SPIRead

void SPIRead(void * DestAddr, int ByteCount);

DESCRIPTION

Reads a block of bytes from the SPI port. The variable SP I xor needs to be set to either 0x00
or OXFF depending on whether or not the received signal needs to be inverted. Most applications

will not need inversion. SP1init() sets the value of SP1xor to 0x00.

If SP1_SLAVE_RDY_PORT is defined for a slave device the driver will turn on the bit imme-
diately upon activating the receiver. It will then wait for a byte to become available then turn off
the bit. The byte will not be available until the master supplies the 8 clock pulses.

If SPI_SLAVE_RDY_PORT is defined for a master device the driver will wait for the bit to
become true before activating the receiver and then wait for it to become false after receiving

the byte.

Note for Master: the receiving device Chip Select must already be active

PARAMETERS
DestAddr Address to store the data
ByteCount Number of bytes to read

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no received bytes.
1 =CS, bytes received.

LIBRARY
SPI.LIB

SEE ALSO
SPlinit, SPIWrite, SPIWrRd

492 rabbit.com

Dynamic C Functions

http://www.rabbit.com

SPIWrite

int SPIWrite(void * SrcAddr, int ByteCount);

DESCRIPTION
Write a block of bytes to the SPI port.

If SP1_SLAVE_RDY_PORT is defined for a slave device the driver will turn on the bit imme-
diately after loading the transmit register. It will then wait for the buffer to become available
then turn off the bit. The buffer will not become available until the master supplies the first
clock.

If SP1_SLAVE_RDY_PORT is defined for a master device the driver will wait for the bit to
become true before transmitting the byte and then wait for it to become false after transmitting
the byte.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of data to write.
ByteCount Number of bytes to write.

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no transmitted bytes.
1 = CS, bytes transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPlinit, SPIRead, SPIWrRd

Dynamic C Functions rabbit.com

493

http://www.rabbit.com

SPIWrRd

void SPIWrRd(void * SrcAddr, void * DstAddr, int ByteCount);

DESCRIPTION
Read and Write a block of bytes from/to the SPI port.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of data to write.
DstAddr Address to put received data.
ByteCount Number of bytes to read/write. The maximum value is 255 bytes. This limit
is not checked! The receive buffer MUST be at least as large as the number
of bytes!

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no received/transmitted bytes.
1 = CS, bytes received/transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPlinit, SPIRead, SPIWrite

494 rabbit.com Dynamic C Functions

http://www.rabbit.com

sprintf

int sprintf(char * buffer, char * format, ...);

DESCRIPTION

This function takes a string (pointed to by Format), arguments of the format, and outputs the
formatted string to buffer (pointed to by buffer). The user should make sure that:
* there are enough arguments after Format to fill in the format parameters in the format string

« the types of arguments after Format match the format fields in Format
» the buffer is large enough to hold the longest possible formatted string

The following is a short list of valid conversion specifiers in the format string. For a complete
list of conversion specifiers, refer to the function description for printf().

%d decimal integer (expects type int)

%u decimal unsigned integer (expects type unsigned int)

%x hexadecimal integer (expects type signed int or unsigned int)
%s a string (not interpreted, expects type (char *))

%f a float (expects type Float)

For example,
sprintf(buffer,”%s = %x","variable x",256);
puts the string “variable x = 100” into buffer.

Themacro STDIO_DISABLE_FLOATS can be defined if it is not necessary to format floating
point numbers. If this macro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Result string of the formatted string.
format String to be formatted.

- Format arguments.

RETURN VALUE
Number of characters written.

LIBRARY
STDIO.LIB

SEE ALSO
printf

Dynamic C Functions rabbit.com 495

http://www.rabbit.com

sqrt

float sqrt(float x);
DESCRIPTION
Calculate the square root of x.

PARAMETERS

X Value to compute.

RETURN VALUE
The square root of x.

LIBRARY
MATH.LIB

SEE ALSO
exp, pow, powlO

srand

void srand(unsigned long seed);
DESCRIPTION
Sets the seed value for the rand () function.

PARAMETER

seed This must be an odd number.

LIBRARY
MATH.LIB

SEE ALSO
rand, randb, randg

496 rabbit.com

Dynamic C Functions

http://www.rabbit.com

strcat

NEAR SYNTAX: char * _n_strcat(char * dst, char * src);

FAR SYNTAX: char far * _f strcat(char far * dst, char far * src);

Note: By default, strcat() is defined to _n_strcat().

DESCRIPTION
Concatenate string src to the end of dst.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to destination string.
src Pointer to location to source string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strncat

Dynamic C Functions rabbit.com

497

http://www.rabbit.com

strchr

NEAR SYNTAX: char * _n_strchr(char * src, char ch);
FAR SYNTAX: char far * _f strchr(char far * src, char ch);

Note: By default, strchr () is defined to _n_strchr().

DESCRIPTION
Scans a string for the first occurrence of a given character.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned.
ch Character to search

RETURN VALUE

Pointer to the first occurrence of ch in src.
Null if ch is not found.

LIBRARY
STRING.LIB

SEE ALSO
strrchr, strtok

498 rabbit.com Dynamic C Functions

http://www.rabbit.com

strcmp

NEAR SYNTAX: int _n_strcmp(char * strl, char * str2);
FAR SYNTAX: int _Ff strcmp(char far * strl, char far * str2);

Note: By default, strcmp() is defined to _n_strcmp().

DESCRIPTION
Performs unsigned character by character comparison of two null terminated strings.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strlis less than str2 because
character in strl is less than corresponding character in str2, or
strl is shorter than but otherwise identical to str2.

=0: strl isidentical to str2

>0: strl is greater than str2 because
character in strl is greater than corresponding character in str2, or
str2 is shorter than but otherwise identical to str1.

LIBRARY
STRING.LIB

SEE ALSO
strncmp, strcmpi, strncmpi

Dynamic C Functions rabbit.com 499

http://www.rabbit.com

strcmpi

NEAR SYNTAX: int * _n_strcmpi(char * strl, char * str2);
FAR SYNTAX: int _Ff _strcmpi(char far * strl, char far * str2);

Note: By default, strcmpi () is defined to _n_strcmpi ().

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two null terminated
strings.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _f_strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: str1l is less than str2 because
character in str1l is less than corresponding character in str2, or
strl is shorter than but otherwise identical to str2.

=0: str1l isidentical to str2

>0: strl is greater than str2 because
character in strl is greater than corresponding character in str2, or
str2 is shorter than but otherwise identical to strl.

LIBRARY
STRING.LIB

SEE ALSO
strncmpi, strncmp, strcmp

500 rabbit.com Dynamic C Functions

http://www.rabbit.com

strcpy

NEAR SYNTAX: char * _n_strcpy(char * dst, char * src);

FAR SYNTAX: char far * _f strcpy(char far * dst, char far * src);

Note: By default, strcpy() is defined to _n_strcpy().

DESCRIPTION
Copies one string into another string, including the null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strncpy

Dynamic C Functions rabbit.com

501

http://www.rabbit.com

strcspn

NEAR SYNTAX: unsigned int _n_strcspn(char * sl1, char * s2);
FAR SYNTAX: size_t T strcspn(char far * sl, char far * s2);

Note: By default, strcspn() is defined to _n_strcpsn().

DESCRIPTION
Scans a string for the occurrence of any of the characters in another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Returns the position (less one) of the first occurrence of a character in s1 that matches any char-
acter in s2.

LIBRARY
STRING.LIB

SEE ALSO
strchr, strrchr, strtok

502 rabbit.com Dynamic C Functions

http://www.rabbit.com

strilen

NEAR SYNTAX: int _n_strlen(char * s);
FAR SYNTAX: int _f strlen(char far * s);

Note: By default, strilen() is defined to _n_strlen().

DESCRIPTION
Calculate the length of a string.
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-

brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS

s Character string.

RETURN VALUE
Number of bytes in a string.

LIBRARY
STRING.LIB

Dynamic C Functions rabbit.com 503

http://www.rabbit.com

strncat

NEAR SYNTAX: char *_n_strncat(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncat(char far * dst, char far * src,
size_t n);

Note: By default, strncat() is definedto _n_strncat().

DESCRIPTION

Appends one string to another up to and including the null terminator or until n characters are
transferred, followed by a null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbi1t4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strcat

504 rabbit.com Dynamic C Functions

http://www.rabbit.com

strncmp

NEAR SYNTAX: int _n_strncmp(char * strl, char * str2, n);
FAR SYNTAX: int _f_strncmp(char far * strl, char far * str2, unsigned

n);
Note: By default, strncmp() is definedto _n_strncmp().

DESCRIPTION
Performs unsigned character by character comparison of two strings of length n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
stril Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytes to compare. If zero, both strings are considered

equal.

RETURN VALUE

<0: strl is less than str2 because
char in strl is less than corresponding char in str2.

=0: str1l isidentical to str2

>0: strl is greater than str2 because
char in strl is greater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO
strcmp, strcmpi, strncmpi

Dynamic C Functions rabbit.com 505

http://www.rabbit.com

strncmpi

NEAR SYNTAX: int _n_strncmpi(char * strl, char * str2, unsigned n);
FAR SYNTAX: int _Ff strncmpi(char far * strl, char far * str2,
unsigned n);

Note: By default, strncmpi () is definedto _n_strncmpi ().

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two strings of length
n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _ ¥ _strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
stril Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytes to compare, if zero then strings are considered

equal

RETURN VALUE

<0: strl isless than str2 because
char in strl is less than corresponding char in str2.

=0: str1l isidentical to str2

>0: strl is greater than str2 because
char in strl is greater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO
strcmpi, strcmp, strncmp

506 rabbit.com Dynamic C Functions

http://www.rabbit.com

strncpy

NEAR SYNTAX: char *_n_strncpy(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncpy(char far * dst, char far * src,
size_t n);

Note: By default, strncpy () is defined to _n_strncpy().

DESCRIPTION

Copies a given number of characters from one string to another and padding with null characters
or truncating as necessary.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with _ ¥ _strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strcpy

Dynamic C Functions rabbit.com 507

http://www.rabbit.com

strpbrk

NEAR SYNTAX: char * _n_strpbrk(char * s1, char * s2);
FAR SYNTAX: char far * _f strpbrk(char far * sl, char far * s2);

Note: By default, strpbrk() is defined to _n_strpbrk().

DESCRIPTION
Scans a string for the first occurrence of any character from another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of a character contained in s2 in s1. Returns null if not
found.

LIBRARY
STRING.LIB

SEE ALSO
strchr, strrchr, strtok

508 rabbit.com Dynamic C Functions

http://www.rabbit.com

strrchr

NEAR SYNTAX: char * _n_strrchr(char * s, int c);
FAR SYNTAX: char far * _f strrchr(char far * s, int c);

Note: By default, strrchr() is defined to _n_strrchr().

DESCRIPTION
Similar to strchr, except this function searches backward from the end of s to the beginning.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
s String to be searched
Cc Search character

RETURN VALUE

Pointer to last occurrence of c in s. If ¢ is not found in s, return null.

LIBRARY
STRING.LIB

SEE ALSO
strchr, strcspn, strtok

Dynamic C Functions rabbit.com 509

http://www.rabbit.com

strspn

NEAR SYNTAX: size_t _n_strspn(char * src, char * brk);
FAR SYNTAX: size_t T strspn(char far * src, char far * brk);

Note: By default, strspn() is defined to _n_strspn().

DESCRIPTION
Scans a string for the first segment in src containing only characters specified in brk.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned
brk Set of characters

RETURN VALUE
Returns the length of the segment.

LIBRARY
STRING.LIB

510 rabbit.com Dynamic C Functions

http://www.rabbit.com

strstr

NEAR SYNTAX: char * _n_strstr(char *sl, char *s2);
FAR SYNTAX: char far * _f strstr(char far * sl1, char far * s2);

Note: By default, strstr() is defined to _n_strstr().

DESCRIPTION
Finds a substring specified by s2 in string s1.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR_STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with_ ¥ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g., _n_strfunc.
For more information about FAR pointers, see the Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Substring to search for.

RETURN VALUE
Pointer to the first occurrence of substring s2 in s1. Returns null if s2 is not found in s1.

LIBRARY
STRING.LIB

SEE ALSO
strcspn, strrchr, strtok

Dynamic C Functions rabbit.com 511

http://www.rabbit.com

strtod

NEAR SYNTAX: Ffloat _n_strtod(char * s, char ** tailptr);
FAR SYNTAX: float _f strtod(char far * s, char far * far * tailptr);

Note: By default, strtod() is defined to _n_strtod().

DESCRIPTION
ANSI string to float conversion.

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_FAR_STRING
will change all calls to functions in this library to their far versions by default. The user may
also explicitly call the far version with _f_ strfunc, where strfunc is the name of the
string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__to the function name, e.g. _n_strtod.
For more information about FAR pointers, see th Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

Warning: The far version of strtod is not backwards compatible with near pointers due to
the use of a double pointer. The problem is that char ** tailptr isa 16-bit pointer
pointing to another 16-bit pointer. The far version, char far * far * tailptr, is a 32-bit
pointer pointing to a 32-bit pointer. If you pass a double near pointer as the argument to
the double far pointer function, the double dereference (**tailptr) of the double pointer
will attempt to access a 32-bit address pointed to by the passed near pointer. The compiler
does not know the contents of a pointer and will assume the inner pointer is a 32-bit
pointer. For more information about FAR pointers, please see the Dynamic C User’s Man-
ual.

512 rabbit.com Dynamic C Functions

http://www.rabbit.com

strtod (cont’d)

In the following examples:

[1 = lbyte
L 1L 1Dx1x] indicates a NEAR address (16 bit) upcast to FAR

Passing a “char far * far * ptr” as tailptr:

ADDRESS: DATA:

[1L 10x1[x] [y1LlylLlylLyl (tailptr)

[yllyllyllyl [z1[z1[z1[z] (*tailptr)
[z11z11z11z] [Correct contents] (**tailptr)

Passing a 'char ** ptr' as tailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:

[1L 1Ix1[x] [1L 1LylLy]l (tailptr)
[1L 1LylLyl [?1[71[z]1[z] (C*tailptr)

[Z11?11z11z] [Incorrect contents] (**tailptr)
PARAMETERS
S String to convert.
tailptr Pointer to a pointer of character. The next conversion may resume at the

location specified by *tai Iptr.

RETURN VALUE
The float number represented by “s.”

LIBRARY
STRING.LIB

SEE ALSO
atof

Dynamic C Functions rabbit.com 513

http://www.rabbit.com

strtok

NEAR SYNTAX: char * _n_strtok(char * src, char * brk);
FAR SYNTAX: char far * _f strtok(char far * src, char far * brk);

Note: By default, strtok() is defined to _n_strtok().

DESCRIPTION
Scans src for tokens separated by delimiter characters specified in brk.
First call with non-null for src. Subsequent calls with null for src continue to search tokens

in the string. If a token is found (i.e., delineators found), replace the first delimiter in src with
a null terminator so that src points to a proper null terminated token.

PARAMETERS
src String to be scanned, must be in SRAM, cannot be a constant. In contrast,
strings initialized when they are declared are stored in flash memory, and
are treated as constants.
brk Character delimiter.

RETURN VALUE
Pointer to a token. If no delimiter (therefore no token) is found, returns null.

LIBRARY
STRING.LIB

SEE ALSO
strchr, strrchr, strstr, strcspn

514 rabbit.com Dynamic C Functions

http://www.rabbit.com

strtol

NEAR SYNTAX: long _n_strtol(char * sptr, char ** tailptr, int base);
FAR SYNTAX: long _f strtol(char far *sptr, char far * far * tailptr,
int base);

Note: By default, strtol () isdefinedto _n_strtol ().

DESCRIPTION
ANSI string to long conversion.

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_FAR_STRING
will change all calls to functions in this library to their far versions by default. The user may
also explicitly call the far version with _f_strfunc, where strfunc is the name of the
string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_FAR_STRING macro is de-
fined and all pointers are near pointers, append _n__ to the function name, e.g. _n_strtod.
For more information about FAR pointers, see th Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

Warning: The far version of strtod is not backwards compatible with near pointers due to
the use of a double pointer. The problem is that char ** tailptr isa 16-bit pointer
pointing to another 16-bit pointer. The far version, char far * far * tailptr, is a 32-bit
pointer pointing to a 32-bit pointer. If you pass a double near pointer as the argument to
the double far pointer function, the double dereference (**tailptr) of the double pointer
will attempt to access a 32-bit address pointed to by the passed near pointer. The compiler
does not know the contents of a pointer and will assume the inner pointer is a 32-bit
pointer. For more information about FAR pointers, please see the Dynamic C User’s Man-
ual.

In the following examples:

[1 = 1byte
[1L 1DXx1Ix] indicates a NEAR address (16 bit) upcast to FAR

Passing a “char far * far * ptr” as tailptr:

ADDRESS: DATA:

[1L 10x1[x] [y1LlylLylLy]l (tailptr)

yllyllylLy]l [z1[z1[z1[z] (*tailptr)
[z1[z1Iz11z] [Correct contents] (**tailptr)

Dynamic C Functions rabbit.com 515

http://www.rabbit.com

strtol (cont’d)

Passing a 'char ** ptr' as tailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:

[1L 1[x1[x] [1L 1LylLy]l (tailptr)
[1L 10ylLy]l [71[71[z1[z] (C*tailptr)

[211711z11z1 [Incorrect contents] (**tailptr)
PARAMETERS
sptr String to convert.
tailptr Assigned the last position of the conversion. The next conversion may re-

sume at the location specified by *tai lptr.

base Indicates the radix of conversion.

RETURN VALUE
The long integer.

LIBRARY
STRING.LIB

SEE ALSO
atoi, atol

516 rabbit.com Dynamic C Functions

http://www.rabbit.com

_syslIsSoftReset

void _syslsSoftReset(void);

DESCRIPTION

This function should be called at the start of a program if you are using protected variables. It
determines whether this restart of the board is due to a software reset from Dynamic C or a call
to ForceSoftReset(). If it was a soft reset, this function then does the following:

» Calls _prot_init() toinitialize the protected variable mechanisms. It is up to the user to
initialize protected variables.

* Calls sysResetChain(). The user my attach functions to this chain to perform additional
startup actions (for example, initializing protected variables). If a soft reset did not take place,
this function calls _prot_recover () to recover any protected variables.

LIBRARY

SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, chkWDTO

sysResetChain

void sysResetChain (void);

DESCRIPTION
This is a function chain that should be used to initialize protected variables. By default, it's emp-
ty

LIBRARY
SYS.LIB

Dynamic C Functions rabbit.com 517

http://www.rabbit.com

tan

float tan (float x);

DESCRIPTION
Compute the tangent of the argument.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

X Angle in radians.

RETURN VALUE

Returns the tangent of x, where -8 x P1 < x <+8 x PI. If x is out of bounds, the function returns
0 and signals a domain error. If the value of X is too close to a multiple of 90° (P1/2) the function
returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO
atan, cos, sin, tanh

518 rabbit.com Dynamic C Functions

http://www.rabbit.com

tanh

float tanh (float x);

DESCRIPTION

Computes the hyperbolic tangent of argument. This functions takes a unitless number as a pa-
rameter and returns a unitless number.

PARAMETERS
X Float to use in computation.

RETURN VALUE

Returns the hyperbolic tangent of x. If x > 49.9 (approx.), the function returns INF and signals
a range error. If X <—49.9 (approx.), the function returns —INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO
atan, cosh, sinh, tan

Dynamic C Functions rabbit.com 519

http://www.rabbit.com

TAT1R_SetValue

char TAT1R_SetValue(int requestor, int value);

DESCRIPTION
If not already in use, or if in a compatible use, allocates the TAT1R resource (sets a new or keeps
the current TAT1R value) as requested. Also enables or disables the requestor's timer Al cas-
cade bit(s) in TACR or TBCR, as appropriate. When the timer B cascade from timer Al is dis-
abled in TBCR the timer B "clocked by PCLK/2" is then enabled.

A run time error occurs if parameter(s) are invalid and also, this function is not reentrant.

Note: This function does not attempt to manage interrupts that are associated with timers
A or B; that work is left entirely up to the application.

PARAMETERS

requestor The requestor of the TAT1R resource. Use exactly one of the following
macros to specify the appropriate requestor:

 TAT1R_AL1TIMER_REQ (e.g., direct use of Timer Al)

* TAT1R_A2TIMER_REQ (e.g., use by serial port E)
 TAT1R_A3TIMER_REQ (e.g., use by serial port F)

* TAT1R_AATIMER_REQ (e.g., use by serial port A)
 TAT1R_ASTIMER_REQ (e.g., use by serial port B)

* TAT1R_A6TIMER_REQ (e.g., use by serial port C)
 TAT1IR_A7TIMER_REQ (e.g., use by serial port D)
 TAT1R_BTIMER_REQ (e.g., use with PWM, servo or triac)

value Either the new TATL1R setting value (0 to 255, inclusive), or the macro
TAT1R_RELEASE_ REQ to release the TAT1R resource in use by the
specified requestor.

RETURN VALUE

The new or current TAT1R setting. The caller should check their requested new TAT1R value
against this return value. If the two values are not the same, the caller may decide the return val-
ue is acceptable after all and make another request using the previous return value. A valid re-
lease request always succeeds; in this case there is no need for the caller to check the return
value.

LIBRARY
sys.lib

520 rabbit.com Dynamic C Functions

http://www.rabbit.com

tm rd

int tm_rd(struct tm * t);

DESCRIPTION
Reads the current system time from SEC_T IMER into the structure t.

WARNING: The variable SEC_TIMER is initialized when a program is started. If you change
the Real Time Clock (RTC), this variable will not be updated until you restart a program, and
the tm_rd() function will not return the time that the RTC has been reset to. The
read_rtc() function will read the actual RTC and can be used if necessary.

PARAMETERS
t Pointer to structure to store time and date.
struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59

char tm_hour; // 0-23

char tm_mday; // 1-31

char tm_mon; // 1-12

char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 0==Sunday

RETURN VALUE

O: Successful.
-1: Clock read failed.

LIBRARY
RTCLOCK.LIB

SEE ALSO
mktm, mktime, tm wr

Dynamic C Functions rabbit.com 521

http://www.rabbit.com

tTm_wr

int tm_wr(struct tm * t);

DESCRIPTION

Sets the system time from a tm struct. It is important to note that although tm_rd() reads the
SEC_TIMER variable, not the RTC, tm_wr () writes to the RTC directly, and SEC_TIMER
is not changed until the program is restarted. The reason for this is so that the DelaySec ()
function continues to work correctly after setting the system time. To make tm_rd () match
the new time written to the RTC without restarting the program, the following should be done:

tm_wr(tm);
SEC_TIMER = mktime(tm);

But this could cause problems ifawaitfor (DelaySec(n)) is pending completion in a co-
operative multitasking program or if the SEC_ T IMER variable is being used in another way the
user, so user beware.

PARAMETERS
t Pointer to structure to read date and time from.
struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59

char tm_hour; // 0-23

char tm_mday; // 1-31

char tm_mon; // 1-12

char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 0==Sunday

RETURN VALUE

0: Success .
-1: Failure.

LIBRARY
RTCLOCK.LIB

SEE ALSO
mktm, mktime, tm_rd

522 rabbit.com Dynamic C Functions

http://www.rabbit.com

tolower

int tolower(int c);
DESCRIPTION
Convert alphabetic character to lower case.

PARAMETERS

C Character to convert

RETURN VALUE
Lower case alphabetic character.

LIBRARY
STRING.LIB

SEE ALSO
toupper, isupper, islower

toupper

int toupper(int c);
DESCRIPTION
Convert alphabetic character to uppercase.

PARAMETERS

C Character to convert.

RETURN VALUE
Upper case alphabetic character.

LIBRARY
STRING.LIB

SEE ALSO
tolower, isupper, islower

Dynamic C Functions rabbit.com

523

http://www.rabbit.com

updateTimers

void updateTimers(void);

DESCRIPTION

Updates the values of TICK_TIMER, MS_TIMER, and SEC_T IMER while running off the 32
kHz oscillator. Since the periodic interrupt is disabled when running at 32 kHz, these values will
not updated unless this function is called.

LIBRARY
SYS.LIB

SEE ALSO
useMainOsc, use32kHzOsc

use32kHzOsc

void use32kHzOsc(void);

DESCRIPTION

Sets the Rabbit processor to use the 32kHz real-time clock oscillator for both the CPU and pe-
ripheral clock, and shuts off the main oscillator. If this is already set, there is no effect. This
mode should provide greatly reduced power consumption. Serial communications will be lost
since typical baud rates cannot be made from a 32kHz clock. Also note that this function dis-
ables the periodic interrupt, so wai tFor and related statements will not work properly (al-
though costatements in general will still work). In addition, the values in TICK_TIMER,
MS_TIMER, and SEC_TIMER will not be updated unless you call the function
updateTimers() frequently in your code. In addition, you will need to call hitwd() pe-
riodically to hit the hardware watchdog timer since the periodic interrupt normally handles that,
or disable the watchdog timer before calling this function. The watchdog can be disabled with
Disable_HW _WDT(Q).

use32kHz0sc () is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO
useMainOsc, useClockDivider, updateTimers

524 rabbit.com Dynamic C Functions

http://www.rabbit.com

useClockDivider

void useClockDivider(void);

DESCRIPTION

Sets the Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the pe-
ripheral clock). If this is already set, there is no effect. Because the peripheral clock is not af-
fected, serial communications should still work. This function also enables the periodic
interrupt in case it was disabled by a call to use32kHzOsc ().

This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO
useMainOsc, use32kHzOsc

Dynamic C Functions rabbit.com

525

http://www.rabbit.com

useClockDivider3000

void useClockDivider3000(int setting);

DESCRIPTION

Sets the expanded clock divider options for the Rabbit 3000 processor. Target communications
will be lost after changing this setting because of the baud rate change. This function also en-
ables the periodic interrupt in case it was disabled by a call to user32kHz0sc().

The peripheral clock is also affected by this function. If you want to divide the main processor
clock and not the peripheral clock, you may use the function useClockDivider () to di-

vide the main processor clock by 8. To divide the main processor clock by any of the other al-
lowable values (2, 4, or 6) means using useClockDivider3000() and thus dividing the
peripheral clock as well.

This function is not task reentrant.

PARAMETER

setting Divider setting. The following are valid:

* CLKDIV_2 - divide main processor clock by two
» CLKDIV_4 - divide main processor clock by four
* CLKDIV_6 - divide main processor clock by six
» CLKDIV_S8 - divide main processor clock by eight

RETURN VALUE
None.

LIBRARY
SYS.LIB

SEE ALSO
useClockDivider, useMainOsc, use32kHzOsc, set32kHzDivider

526 rabbit.com Dynamic C Functions

http://www.rabbit.com

useMainOsc

void useMainOsc(void);

DESCRIPTION

Sets the Rabbit processor to use the main oscillator for both the CPU and peripheral clock. If
this is already set, there is no effect. This function also enables the periodic interrupt in case it
was disabled by a call to use32kHzOsc (), and updates the TICK_TIMER,MS_TIMER, and
SEC_TIMER variables from the real-time clock. This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO
use32kHzOsc, useClockDivider

utoa

char * utoa(unsigned value, char * buf);

DESCRIPTION

Places up to 5 digit character string at *buF representing value of unsigned number. Suppresses
leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 program bytes.

PARAMETERS
value 16-bit number to convert.
buf Character string of converted number.

RETURN VALUE
Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO
itoa, htoa, lItoa

Dynamic C Functions rabbit.com 527

http://www.rabbit.com

vram2root

int vram2root(void * dest, int start, int length);

DESCRIPTION

This function copies data from the VBAT RAM. Tamper detection on the Rabbit 4000 erases
the VBAT RAM with any attempt to enter bootstrap mode.

PARAMETERS
dest The address to which the data in the VBAT RAM will be copied.
start The start location within the VBAT RAM (0-31).
length The length of data to read from VBAT RAM. The length should be greater
than 0.
The parameters length + start should not exceed 32.
LIBRARY
VBAT.LIB
SEE ALSO
root2vram
528 rabbit.com Dynamic C Functions

http://www.rabbit.com

VdGetFreeWd

int VdGetFreeWd(char count);

DESCRIPTION

Returns a free virtual watchdog and initializes that watchdog so that the virtual driver begins
counting it down from count. The number of available virtual watchdogs is determined by the
macro N_WATCHDOG, which is 10 by default. The default can be overridden by the user, e.g.,
#define N_WATCHDOG 11.

The virtual driver is called every 0.00048828125 second. On every 128th call to it (i.e., every
62.5 ms), the virtual watchdogs are counted down and then tested. If any virtual watchdog
reaches zero, this is a fatal error. Once a virtual watchdog is active, it should reset periodically
with a call to VdHitWd () to prevent the count from readching zero.

PARAMETERS

count 1 < count <= 255

RETURN VALUE
Integer id number of an unused virtual watchdog timer.

LIBRARY
VDRIVER.LIB

Dynamic C Functions rabbit.com 529

http://www.rabbit.com

VdH1twd

int VdHitwd(int ndog);

DESCRIPTION

Resets virtual watchdog counter to N counts where N is the argument to the call to
VdGetFreeWd () that obtained the virtual watchdog ndog.

The virtual driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this
is a fatal error. Once a virtual watchdog is active it should reset periodically with a call to
VdHitWd () to prevent this.

If N =2, VdHitWd () will need to be called again for virtual watchdog ndog within 62.5 ms.

If N =255, VdHitWd () will need to be called again for virtual watchdog ndog within
15.9375 seconds.

PARAMETERS

ndog Id of virtual watchdog returned by VdGetFreeWd ()

LIBRARY
VDRIVER.LIB

Vdinit

void VvdInit(void);

DESCRIPTION

Initializes the Virtual Driver for all Rabbit boards. Supports DelayMs (), DelaySec(),
DelayTick(). VdInit() is called by the BIOS unless it has been disabled.

LIBRARY
VDRIVER.LIB

530 rabbit.com Dynamic C Functions

http://www.rabbit.com

VdReleaseWd

int VdReleaseWd(int ndog);

DESCRIPTION

Deactivates a virtual watchdog and makes it available for VdGetFreeWd().

PARAMETERS

ndog Handle returned by VdGetFreeWd ()

RETURN VALUE

0: ndog out of range.
1: Success.

LIBRARY
VDRIVER.LIB

EXAMPLE

// VdReleaseWd virtual watchdog example
main() {

int wd;

unsigned long tm;

tm SEC_TIMER;

wd VdGetFreeWd(255) ;

while(SEC_TIMER - tm < 60) {
VaHitwd (wd) ;

by
VdReleaseWd (wd)

//

//
//
//
//
//

//

handle for a virtual watchdog

wd activated, 9 virtual watchdogs
now available. wd must be hit

at least every 15.875 seconds

let it run for a minute

reset counter back to 255

now 10 virtual watchdogs available

Dynamic C Functions

rabbit.com

531

http://www.rabbit.com

WriteFlash2

int WriteFlash2(unsigned long flashDst, void * rootSrc,
unsigned len);

DESCRIPTION

Write Ien bytes from rootSrc to physical address flashDst on the 2nd flash device. The
source must be in root. The FlashDst address plus the sum of numbytes|[] area must be
within memory quadrant(s) already mapped to the second flash.

This function is not reentrant.

Note: This function should NOT be used if you are using the second flash device for a
flash file system, e.g. if you are writing a TCP/IP-based application!

Note: This function is extremely dangerous when used with large sector flash. Don't do it.

PARAMETERS
flashDst Physical address of the flash destination
rootSrc Pointer to the root source
len Number of bytes to write

RETURN VALUE

0O: Success.
-1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc notin root.
-3: Time out while writing flash.
-4: Attempt to write to ID block
-5: Sector erase needed; write aborted

LIBRARY
XMEM.LI1B

532 rabbit.com Dynamic C Functions

http://www.rabbit.com

WriteFlash2Array

int WriteFlash2Array(unsigned long flashDst, void * rootSrc[],
unsigned numbytes[], int numsources);

DESCRIPTION

Write a set of scattered information to the 2nd flash in a contiguous block. The sources are given
in the rootSrc array, and the corresponding number of bytes in each source is given in the
numbytes]] array. All sources must be in root. numsources specifies the number of en-
tries in the rootSrc and numbytes arrays. The FlashDst address plus the sum of
numbytes]] area must be within memory quadrant(s) already mapped to the second flash.

This function is not reentrant. It was introduced in Dynamic C version 7.30.

Note: This function should NOT be used if you are using the second flash device for a
flash file system, e.g. if you are writing a TCP/IP-based application!

Note: This function is extremely dangerous when used with large sector flash. Don't do it.

Note: The sum of the lengths in numbytes[] must not exceed 65535 bytes, else not all
data will be written.

PARAMETERS
flashDst Physical address of the flash destination.
rootSrc Array of pointers to the root sources.
numbytes Array of numbers of bytes to write for each source.

numsources Number of sources specified in rootSrc[] and numbytes[].

RETURN VALUE

0O: Success.
-1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc[] entry not in root.
-3: Time-out while writing flash.

LIBRARY
XMEM_LIB

Dynamic C Functions rabbit.com 533

http://www.rabbit.com

write rtc

void write_rtc(unsigned long int time);

DESCRIPTION

Writes a 32 bit seconds value to the RTC, zeros other bits. This function does not stop or delay
periodic interrupt. It does not affect the SEC_TIMER or MS_ T IMER variables.

PARAMETERS

time 32-bit value representing the number of seconds since January 1, 1980.

LIBRARY
RTCLOCK.LIB

SEE ALSO
read _rtc

534 rabbit.com Dynamic C Functions

http://www.rabbit.com

writeUserBlock

int writeUserBlock(unsigned addr, void *source, unsigned numbytes);

DESCRIPTION

Rabbit-based boards have a System ID block located on the primary flash. (See the Rabbit Mi-
croprocessor Designer's Handbook for more information on the System ID block.) Version 2
and later of this ID block has a pointer to a User ID block: a place intended for storing calibra-
tion constants, passwords, and other non-volatile data.

The User block is recommended for storing all non-file data. The User block is where calibra-
tion constants are stored for boards with analog /0. Space in the User block is limited to as
small as (8K - sizeof(SyslIDBlock)) bytes, or less, if there are calibration constants.

writeUserBlock() writes a number of bytes from root memory to the User block. This
block is protected from normal writes to the flash device and can only be accessed through this
function or the function writeUserBlockArray().

Using this function can cause all interrupts to be disabled for as long as 20 ms while a flash sec-
tor erases, depending on the flash type. A single call can produce as many as four of these erase
delays. This will cause periodic interrupts to be missed, and can cause other interrupts to be

missed as well. Therefore, it is best to buffer up data to be written rather than to do many writes.

While debugging, several consecutive calls to this function can cause a loss of target serial com-
munications. This effect can be reduced by introducing delays between the calls, lowering the
baud rate, or increasing the serial time-out value in the project file.

Note: See the manual for your particular board for more information before overwriting
any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
writeUserBlock() should be called until it returns zero or a negative error code. A
positive return value indicates that the SPI port needed by the serial flash is in use by
another device. However, if using uC/OS-1l and _SP1_USE_UCOS_MUTEX is #defined,
then this function only needs to be called once. If the mutex times out waiting for the SPI
port to free up, the run time error ERR_SP1_MUTEX_ERROR will occur. See the descrip-
tion for _rcm43_ In1tUCOSMutex () for more information on using nC/OS-I1 and
_SP1_USE_UCOS_MUTEX.

Backwards Compatibility:

If the version of the System ID block doesn't support the User ID block, or no System ID block
is present, then 8K bytes starting 16K bytes from the top of the primary flash are designated the
User ID block area. However, to prevent errors arising from incompatible large sector configu-
rations, this will only work if the flash type is small sector. Rabbit Semiconductor manufactured
boards with large sector flash will have valid System and User ID blocks, so this should not be
problem on Rabbit boards.

If users create boards with large sector flash, they must install System ID blocks version 2 or
greater to use or modify this function.

Dynamic C Functions rabbit.com 535

http://www.rabbit.com

writeUserBlock (cont’d)

PARAMETERS
addr Address offset in User block to write to.
source Pointer to source to copy data from.
numbytes Number of bytes to copy.

RETURN VALUE

0O: Successful
-1: Invalid address or range

The return values below are new with Dynamic C 10.21:
-2: No valid user block found (block version 3 or later)
-3: flash writing error
The return values below are applicable only if _SP1_USE_UCOS_MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO
readUserBlock, writeUserBlockArray

536 rabbit.com Dynamic C Functions

http://www.rabbit.com

writeUserBlockArray

int writeUserBlockArray(unsigned addr, void * sources[], unsigned
numbytes[], int numsources);

DESCRIPTION

Rabbit Semiconductor boards are released with System 1D blocks located on the primary flash.
Version 2 and later of this ID block has a pointer to a User block that can be used for storing
calibration constants, passwords, and other non-volatile data. The User block is protected from
normal write to the flash device and can only be accessed through this function or
writeUserBlock().

This function writes a set of scattered data from root memory to the User block. If the data to
be written are in contiguous bytes, using the function wr i teUserBlock()is sufficient. Use
of writeUserBlockArray() is recommended when the data to be written is in noncon-
tiguous bytes, as may be the case for something like network configuration data.

See the designer’s handbook for your Rabbit processor (e.g., the Rabbit 4000 Designer’s Hand-
book) for more information about the System ID and User blocks.

Note: Portions of the User block may be used by the BIOS for your board to store values,
e.g., calibration constants. See the manual for your particular board for more information
before overwriting any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
writeUserBlockArray() should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in use
by another device. However, if using uC/OS-Il and _SP1_USE_UCOS_MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SP1_MUTEX_ERROR will occur. See
the description for _rcm43_ InitUCOSMutex () for more information on using
pMC/OS-11 and _SP1_USE_UCOS_MUTEX.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block is

present, then the 8K bytes starting 16K bytes from the top of the primary flash are designated

User block area. This only works if the flash type is small sector. Rabbit manufactured boards
with large sector flash will have valid System 1D and User blocks, so is not a problem on Rabbit
boards. If users create boards with large sector flash, they must install System ID blocks version
3 or greater to use this function, or modify this function.

Dynamic C Functions rabbit.com 537

http://www.rabbit.com

writeUserBlockArray

PARAMETERS
addr Address offset in User block to write to.
sources Array of pointer to sources to copy data from.
numbytes Array of number of bytes to copy for each source. The sum of the lengths

in this array must not exceed 32767 bytes, or an error will be returned.

numsources Number of data sources.

RETURN VALUE
0O: Successful.
-1: Invalid address or range.
-2: No valid User block found (block version 3 or later).
-3: Flash writing error.

The return values below are applicable only if _SP1_USE_UCOS_MUTEX is not #defined:
—-ET IME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

538 rabbit.com Dynamic C Functions

http://www.rabbit.com

WrPortE

void WrPortE(unsigned int port, char * portshadow, int data_value);

DESCRIPTION

Writes an external 1/O register with 8 bits and updates shadow for that register. The variable
names must be of the form port and portshadow for the most efficient operation. A null
pointer may be substituted if shadow support is not desired or needed.

PARAMETERS
port Address of external data register.

portshadow Reference pointer to a variable shadowing the register data. Substitute with
null pointer (or 0) if shadowing is not required.

data_value Value to be written to the data register

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortl, BitRdPortl, WrPortl, BitWrPortl, RdPortE, BitRdPortE,
BitWrPortE

Dynamic C Functions rabbit.com 539

http://www.rabbit.com

WrPortl

void WrPortl(int port, char * portshadow, int data value);

DESCRIPTION

Writes an internal 1/0O register with 8 bits and updates shadow for that register.
PARAMETERS
port Address of data register.

portshadow Reference pointer to a variable shadowing the register data. Substitute with
null pointer (or 0) if shadowing is not required.

data_ value Value to be written to the data register

LIBRARY
SYSI0.LIB

SEE ALSO

RdPortl, BitRdPortl, BitRdPortE, BitWrPortl, RdPortE, WrPortE,
BitWrPortE

540 rabbit.com Dynamic C Functions

http://www.rabbit.com

xalloc

long xalloc(long sz);

DESCRIPTION

Allocates the specified number of bytes in extended memory. Starting with Dynamic C version
7.04P3, the returned address is always even (word) aligned.

Starting with Dynamic C 8, if xal loc () fails, a run-time error will occur. This is a wrapper
function for _xal loc (), for backwards compatibility. Itisthe sameas_xalloc(&sz, 1,
XALLOC_MAYBBB) except that the actual allocated amount is not returned since the parameter
is not a pointer.

Starting with Dynamic C 9.30, xal loc () and related functions were modified so that they are
now driven by the compiler origin directives.

Note: xal loc () is not thread safe since it accesses a global static structure with no lock-
ing.

PARAMETERS

sz Number of bytes to allocate. This is rounded up to the next higher even
number.

RETURN VALUE

The 20-bit physical address of the allocated data: Success.
O: Failure.

Note: Starting with Dynamic C 8, a run-time exception will occur if the function fails.

LIBRARY
STACK.LIB

SEE ALSO
root2xmem, xmem2root, xavail

Dynamic C Functions rabbit.com 541

http://www.rabbit.com

_xalloc

long _xalloc(long * sz, word align, word type);

DESCRIPTION
Allocates memory in extended memory. If _xal loc () fails, a runtime error will occur.

PARAMETERS

sz On entry, pointer to the number of bytes to allocate. On return, the pointed-
to value will be updated with the actual number of bytes allocated. This
may be larger than requested if an odd number of bytes was requested, or
if some space was wasted at the end because of alignment restrictions.

align Storage alignment as the log (base 2) of the desired returned memory start-
ing address. For example, if this parameter is “8,” then the returned address
will align on a 256-byte boundary. Values between 0 and 16 inclusive are
allowed. Any other value is treated as zero, i.e., no required alignment.

type This parameter is only meaningful on boards with more than one
type of RAM. For example, boards with a fast RAM and a slower
battery-backed RAM like the RCM3200 or RCM3300 Use one of the
following values, any other value will have undefined results.

XALLOC_ANY (0) - any type of SRAM storage allowed

XALLOC_BB (1) - must be battery-backed program execution SRAM
(a.k.a., fast RAM).

XALLOC_NOTBB (2) - return non-BB SRAM only.
XALLOC_MAYBBB (3) - return non-BB SRAM in preference to BB.

RETURN VALUE
The 20-bit physical address of the allocated data on success. On error, a runtime error occurs.

Note: This return value cannot be used with pointer arithmetic.

LIBRARY
STACK.LIB

EXCEPTIONS
ERR_BADXALLOC - if could not allocate requested storage, or negative size passed.

542 rabbit.com Dynamic C Functions

http://www.rabbit.com

xalloc_stats

void xalloc_stats(word parm);

DESCRIPTION
Prints a table of available xal loc () regions to the Stdio window.

This function was introduced in Dynamic C version 8. It is for debugging and educational pur-
poses. It should not be called in a production program.

PARAMETERS
parm Prior to Dynamic C version 9.30: reserved for future use. Set to 0.
Starting with DC 9.30: this parameter is of type long. It is the address of
the data structure xbreak_t and must not be 0.
LIBRARY

MEM.LIB (XMEM.LIB prior to DC 9.30)

SEE ALSO
xalloc, xalloc, xavail, xavail, xrelease

Dynamic C Functions rabbit.com

543

http://www.rabbit.com

xavail

long xavail(long * addr_ptr);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate
call to xal loc (), and optionally allocates that amount.

This function was introduced in Dynamic C version 7.04P3.

PARAMETERS

addr_ptr Pointer to a long word in root data memory to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block is allocated as if by a call to xal loc().

RETURN VALUE

The size of the largest free block available. If this is zero, then *addr_ptr will not be
changed.

LIBRARY
XMEM_LIB (was in STACK.LIB prior to DC 8)

SEE ALSO
xalloc, xalloc, xavail, xrelease, xalloc_stats

544 rabbit.com Dynamic C Functions

http://www.rabbit.com

_xavall

long _xavail(long * addr_ptr, word align, word type);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate
call to _xalloc(), and optionally allocates that amount. The al ign and type parameters
are the same as would be presented to _xal loc().

PARAMETERS
addr_ptr Address of a longword, in root data memory, to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block is allocated as if by a call to _xalloc().
align Alignment of returned block, as per _xalloc().
type Type of memory, as per _xalloc().

RETURN VALUE

The size of the largest free block available. If this is zero, then *addr_ptr will not be
changed.

LIBRARY
XMEM_LIB

SEE ALSO
xalloc, xalloc, xavail, xrelease, xalloc_stats

Dynamic C Functions rabbit.com

545

http://www.rabbit.com

xCalculateECC256

long xCalculateECC256(unsigned long data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capa-
bility) value for a 256 byte (2048 bit) data buffer located in extended memory.

PARAMETERS
data Physical address of the 256 byte data buffer.

RETURN VALUE

The calculated ECC in the 3 LSBs of the long (i.e., BCDE) result. Note that the MSB (i.e., B)
of the long result is always zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

546 rabbit.com Dynamic C Functions

http://www.rabbit.com

XChkCorrectECC256

int XxChkCorrectECC256(unsigned long data, void * old_ecc,
void * new_ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary
and possible (1 bit correction, 2 bit detection), corrects the data in the specified extended mem-

ory buffer.

PARAMETERS
data Physical address of the 256 byte data buffer
old_ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Data and ECC are good (no correction is necessary)
1: Data is corrected and ECC is good

2: Data is good and ECC is corrected

3: Data and/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Functions rabbit.com 547

http://www.rabbit.com

xgetfloat

float xgetfloat(long src);

DESCRIPTION
Returns the Float pointed to by src. This is the most efficient function for obtaining 4 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the float value to retrieve.

RETURN VALUE
Tloat value (4 bytes) at src.

LIBRARY
XMEM.LI1B

xgetint

int xgetint(long src);

DESCRIPTION
Returns the integer pointed to by src. This is the most efficient function for obtaining 2 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the integer value to retrieve.

RETURN VALUE
Integer value (2-bytes) at src.

LIBRARY
XMEM_LIB

548 rabbit.com Dynamic C Functions

http://www.rabbit.com

xgetlong

long xgetlong(long src);

DESCRIPTION
Return the long word pointed to by src. This is the most efficient function for obtaining 4 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the long value to retrieve.

RETURN VALUE
Long integer value (4 bytes) at src.

LIBRARY
XMEM.LI1B

Dynamic C Functions rabbit.com 549

http://www.rabbit.com

xmem2root

int xmem2root(void * dest, unsigned long int src,
unsigned int len);

DESCRIPTION
Stores Ien characters from physical address src to logical address dest.

PARAMETERS
dest Logical address
src Physical address
len Numbers of bytes

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.
-2: Destination not all in root.
LIBRARY
XMEM_LIB

SEE ALSO
root2xmem, xalloc

550 rabbit.com

Dynamic C Functions

http://www.rabbit.com

xmem2xmem

int xmem2xmem(unsigned long dest, unsigned long src,
unsigned len);

DESCRIPTION

Stores len characters from physical address src to physical address dest.

PARAMETERS
dest Physical address of destination
src Physical address of source data
len Length of source data in bytes

RETURN VALUE

0O: Success.
-1: Attempt to write flash memory area, nothing written.

LIBRARY
XMEM_LIB

Dynamic C Functions rabbit.com

551

http://www.rabbit.com

xmemchr

long xmemchr(long src, char ch, unsigned short n);

DESCRIPTION
Search for the first occurrence of character ch in the xmem area pointed to by src.

PARAMETERS
src xmem (linear) address of the first character to search.
ch Character to search for.
n Maximum number of characters to search.

RETURN VALUE

0: Character was not found within n bytes from the start.
>0: Physical address of the first character that matched ch.

LIBRARY
XMEM_LI1B

552 rabbit.com Dynamic C Functions

http://www.rabbit.com

xmemecmp

int xmemcmp(long

DESCRIPTION

Test whether xmem
pared.

PARAMETERS
Xstr
str

n

RETURN VALUE

0: Exact match.
>0: xstr > str
<0: xstr < str

LIBRARY
XMEM_LIB

Xstr, char * str, unsigned short n);

string at xstr matches the root memory string at str. n bytes are com-

xmem (linear) address of the first character of the first string to compare.
root address of the first character of the second string to compare.

Length of each string. If n is zero, returns zero. n must be less than or equal
4097.

Dynamic C Functions

rabbit.com

553

http://www.rabbit.com

xrelease

void xrelease(long addr, long sz);

DESCRIPTION
Release a block of memory previously obtained by xal loc () or by xavai 1 () with a non-
null parameter. xrelease() may only be called to free the most recent block obtained. It is
NOT a general-purpose malloc/free type of dynamic memory allocation. Calls to
xalloc()/xrelease() must be nested in first-allocated/last-released order, similar to the
execution stack. The addr parameter must be the return value from xal loc (). If not, then a
run-time exception will occur. The sz parameter must also be equal to the actual allocated size,
however this is not checked. The actual allocated size may be larger than the requested size (be-
cause of alignment overhead). The actual size may be obtained by calling _xal loc () rather
than xal loc (). For this reason, it is recommended that your application consistently uses
_xalloc() rather than xal loc () if you intend to use this function.

PARAMETERS
addr Address of storage previously obtained by _xalloc().

sz Size of storage previously returned by xalloc().

LIBRARY
XMEM_LI1B

SEE ALSO
xalloc, xalloc, xavail, xavail, xalloc_stats

554 rabbit.com Dynamic C Functions

http://www.rabbit.com

xsetint

void xsetint(long dst, int val);

DESCRIPTION
Set the integer pointed to by dst. This is the most efficient function for writing two bytes to
Xmem.
PARAMETERS
dst xmem (linear) address of the int value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM_LIB

xsetfloat

void xsetfloat(long dst, float val);

DESCRIPTION

Set the float pointed to by dst. This is the most efficient function for writing 4 bytes to xmem.

PARAMETERS
dst xmem (linear) address of the float value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM_LIB

Dynamic C Functions rabbit.com

555

http://www.rabbit.com

xsetlong

void xsetlong(long dst, long val);

DESCRIPTION
Set the long integer pointed to by dst. This is the most efficient function for writing 4 bytes to
Xmem.
PARAMETERS
dst xmem (linear) address of the long integer value to set.
val value to store into the above location.

RETURN VALUE
None

LIBRARY
XMEM_LIB

xstrilen

unsigned int xstrlen(long src);

DESCRIPTION

Return the length of the string in xmem pointed to by src. If there is no null terminator within
the first 65536 bytes of the string, then the return value will be meaningless.

PARAMETERS

src xmem (linear) address of the first character of the string. Note: to perform
a normal null-terminated search, ensure that src is in the range 0..22°71.
If the MSB of src is not zero (i.e., bits 24-31) then that character will be
used to terminate the search rather than the standard null terminator. E.g.,
to determine the length of a string terminated by '@":

xstrilen(paddr(my_str) | (long)"@" << 24);

RETURN VALUE
Length of string, not counting the terminator.

LIBRARY
XMEM_LIB

556 rabbit.com Dynamic C Functions

http://www.rabbit.com

| RABBIT. S PRODUCT MANUAL

Software License Agreement

RABBIT® SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING THE
ENCLOSED RABBIT DYNAMIC C SOFTWARE, WHICH INCLUDES COMPUTER SOFTWARE
("SOFTWARE") AND MAY INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND
"ONLINE" OR ELECTRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF
YOURSELF OR AS AN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE
TO ALL THE TERMS OF THIS END USER LICENSE AGREEMENT ("LICENSE") REGARDING
YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDI-
ATELY CONTACT RABBIT FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to include to
protect our legal rights. If You have any questions, write or call Rabbit at (530) 757-4616, 2900 Spafford
Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capitalized
words used in this License shall have the following meanings:

1.1 "Qualified Applications" means an application program developed using the Software and that
links with the development libraries of the Software.

1.1.1 "Qualified Applications" is amended to include application programs developed using the Soft-
ools WinIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-I1 (uC/OS-I1) library and sample code and the Point-to-Point Protocol (PPP)
library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software may be
modified for use with the Softools WinIDE program in Qualified Systems as defined in 1.2. All
other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems™ means a microprocessor-based computer system which is either (i) manufac-
tured by, for or under license from Rabbit, or (ii) based on the Rabbit 2000 microprocessor, the
Rabbit 3000 microprocessor, the Rabbit 4000 microprocessor, or any other Rabbit microproces-
sor. Qualified Systems may not be (a) designed or intended to be re-programmable by your cus-
tomer using the Software, or (b) competitive with Rabbit products, except as otherwise stated in a
written agreement between Rabbit and the system manufacturer. Such written agreement may
require an end user to pay run time royalties to Rabbit.

Dynamic C Functions rabbit.com 557

http://www.rabbit.com

2. License. Rabbit grants to You a nonexclusive, nontransferable license to (i) use and reproduce the Soft-
ware, solely for internal purposes and only for the number of users for which You have purchased
licenses for (the "Users") and not for redistribution or resale; (ii) use and reproduce the Software solely
to develop the Qualified Applications; and (iii) use, reproduce and distribute, the Qualified Applica-
tions, in object code only, to end users solely for use on Qualified Systems; provided, however, any
agreement entered into between You and such end users with respect to a Qualified Application is no
less protective of Rabbit’s intellectual property rights than the terms and conditions of this License. (iv)
use and distribute with Qualified Applications and Qualified Systems the program files distributed with
Dynamic C named RFU.EXE, PILOT.BIN, and COLDLOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile, reverse
engineer, disassemble or otherwise attempt to reconstruct or discover the source code of the Software,
alter, merge, modify, translate, adapt in any way, prepare any derivative work based upon the Software,
rent, lease network, loan, distribute or otherwise transfer the Software or any copy thereof. You shall
not make copies of the copyrighted Software and/or documentation without the prior written permis-
sion of Rabbit; provided that, You may make one (1) hard copy of such documentation for each User
and a reasonable number of back-up copies for Your own archival purposes. You may not use copies of
the Software as part of a benchmark or comparison test against other similar products in order to pro-
duce results strictly for purposes of comparison. The Software contains copyrighted material, trade
secrets and other proprietary material of Rabbit and/or its licensors and You must reproduce, on each
copy of the Software, all copyright notices and any other proprietary legends that appear on or in the
original copy of the Software. Except for the limited license granted above, Rabbit retains all right, title
and interest in and to all intellectual property rights embodied in the Software, including but not limited
to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other technical data
received from Rabbit, nor the direct product thereof, will be exported outside the United States or re-
exported except as authorized and as permitted by the laws and regulations of the United States and/or
the laws and regulations of the jurisdiction, (if other than the United States) in which You rightfully
obtained the Software. The Software may not be exported to any of the following countries: Cuba, Iran,
Irag, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Software
is supplied to the Department of Defense ("DOD"), the Software is classified as "Commercial Com-
puter Software™ and the Government is acquiring only "restricted rights™ in the Software and its docu-
mentation as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the Software
is supplied to any unit or agency of the United States Government other than DOD, the Government's
rights in the Software and its documentation will be as defined in Clause 52.227-19(c)(2) of the FAR or,
in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR.

558 rabbit.com Dynamic C Functions

http://www.rabbit.com

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and its
documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECHNICAL
SUPPORT ARE PROVIDED ON AN "AS IS" BASIS AND WITHOUT WARRANTY OF ANY
KIND. Information regarding any third party services included in this package is provided as a conve-
nience only, without any warranty by Rabbit, and will be governed solely by the terms agreed upon
between You and the third party providing such services. RABBIT AND ITS LICENSORS
EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHER-
WISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS. RABBIT DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, RABBIT DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY RABBIT OR ITS AUTHORIZED
REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING NEG-
LIGENCE, SHALL RABBIT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUEN-
TIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE AND/OR INABILITY TO USE THE SOFTWARE, EVEN IF RABBIT OR ITS AUTHO-
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL RABBIT’S TOTAL LIABILITY
TO YOU FOR ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CON-
TRACT, TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. This License is effective for the duration of the copyright in the Software unless termi-
nated. You may terminate this License at any time by destroying all copies of the Software and its docu-
mentation. This License will terminate immediately without notice from Rabbit if You fail to comply
with any provision of this License. Upon termination, You must destroy all copies of the Software and
its documentation. Except for Section 2 (License™), all Sections of this Agreement shall survive any
expiration or termination of this License.

Dynamic C Functions rabbit.com 559

http://www.rabbit.com

9. General Provisions. No delay or failure to take action under this License will constitute a waiver unless

expressly waived in writing, signed by a duly authorized representative of Rabbit, and no single waiver
will constitute a continuing or subsequent waiver. This License may not be assigned, sublicensed or
otherwise transferred by You, by operation of law or otherwise, without Rabbit's prior written consent.
This License shall be governed by and construed in accordance with the laws of the United States and
the State of California, exclusive of the conflicts of laws principles. The United Nations Convention on
Contracts for the International Sale of Goods shall not apply to this License. If for any reason a court of
competent jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so as to affect the intent
of the parties, and the remainder of this License shall continue in full force and effect. This License
constitutes the entire agreement between the parties with respect to the use of the Software and its doc-
umentation, and supersedes all prior or contemporaneous understandings or agreements, written or oral,
regarding such subject matter. There shall be no contract for purchase or sale of the Software except
upon the terms and conditions specified herein. Any additional or different terms or conditions pro-
posed by You or contained in any purchase order are hereby rejected and shall be of no force and effect
unless expressly agreed to in writing by Rabbit. No amendment to or modification of this License will
be binding unless in writing and signed by a duly authorized representative of Rabbit.

Digi International Inc. © 2008 < All rights reserved.

560

rabbit.com Dynamic C Functions

http://www.rabbit.com

	Table of Contents
	Alphabetical Listing of Dynamic C Functions
	Group Listing of Dynamic C Functions
	1. Function Descriptions
	abs
	acos
	acot
	acsc
	AESdecrypt4x4
	AESdecryptStream4x4_CBC
	AESencrypt4x4
	AESencryptStream4x4_CBC
	AESexpandKey4
	AESinitStream4x4
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol
	bit
	BIT
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI
	CalculateECC256
	ChkCorrectECC256
	ceil
	chkHardReset
	chkSoftReset
	chkWDTO
	clockDoublerOn
	clockDoublerOff
	CloseInputCompressedFile
	CloseOutputCompressedFile
	CoBegin
	cof_pktXreceive
	cof_pktXsend
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CompressFile
	CoPause
	CoReset
	CoResume
	cos
	cosh
	DecompressFile
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	Disable_HW_WDT
	disableIObus
	DMAalloc
	DMAcompleted
	DMAhandle2chan
	DMAioe2mem
	DMAioi2mem
	DMAloadBufDesc
	DMAmatchSetup
	DMAmem2ioe
	DMAmem2ioi
	DMAmem2mem
	DMApoll
	DMAprintBufDesc
	DMAprintRegs
	DMAsetBufDesc
	DMAsetDirect
	DMAsetParameters
	DMAstartAuto
	DMAstartDirect
	DMAstop
	DMAstopDirect
	DMAtimerSetup
	DMAunalloc
	Enable_HW_WDT
	enableIObus
	errlogGetHeaderInfo
	errlogGetNthEntry
	errlogFormatEntry
	errlogFormatRegDump
	errlogFormatStackDump
	errlogGetMessage
	errlogReadHeader
	error_message
	exception
	exit
	exp
	fabs
	fat_AutoMount
	fat_Close
	fat_CreateDir
	fat_CreateFile
	fat_CreateTime
	fat_Delete
	fat_EnumDevice
	fat_EnumPartition
	fat_FileSize
	fat_FormatDevice
	fat_FormatPartition
	fat_Free
	fat_GetAttr
	fat_GetName
	fat_GetPartition
	fat_Init
	fat_InitUCOSMutex
	fat_IsClosed
	fat_IsOpen
	fat_LastAccess
	fat_LastWrite
	fat_MountPartition
	fat_Open
	fat_OpenDir
	fat_PartitionDevice
	fat_Read
	fat_ReadDir
	fat_Seek
	fat_SetAttr
	fat_Split
	fat_Status
	fat_SyncFile
	fat_SyncPartition
	fat_Tell
	fat_tick
	fat_Truncate
	fat_UnmountDevice
	fat_UnmountPartition
	fat_Write
	fat_xRead
	fat_xWrite
	fclose
	fcreate (FS1)
	fcreate (FS2)
	fcreate_unused (FS1)
	fcreate_unused (FS2)
	fdelete (FS1)
	fdelete (FS2)
	fflush (FS2)
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen_rd (FS1)
	fopen_rd (FS2)
	fopen_wr (FS1)
	fopen_wr (FS2)
	forceSoftReset
	fread (FS1)
	fread (FS2)
	frexp
	fs_format (FS1)
	fs_format (FS2)
	fs_init (FS1)
	fs_init (FS2)
	fs_reserve_blocks (FS1)
	fsck (FS1)
	fseek (FS1)
	fseek (FS2)
	fs_get_flash_lx (FS2)
	fs_get_lx (FS2)
	fs_get_lx_size (FS2)
	fs_get_other_lx (FS2)
	fs_get_ram_lx (FS2)
	fs_set_lx (FS2)
	fs_setup (FS2)
	fs_sync (FS2)
	ftell (FS1)
	ftell (FS2)
	fshift
	fwrite (FS1)
	fwrite (FS2)
	ftoa
	getchar
	get_cpu_frequency
	getcrc
	getdivider19200
	gets
	_GetSysMacroIndex
	_GetSysMacroValue
	GetVectExtern2000
	GetVectExtern3000
	GetVectIntern
	gps_get_position
	gps_get_utc
	gps_ground_distance
	hanncplx
	hannreal
	HDLCabortX
	HDLCcloseX
	HDLCdropX
	HDLCerrorX
	HDLCextClockX
	HDLCopenX
	HDLCpeekX
	HDLCreceiveX
	HDLCsendX
	HDLCsendingX
	hexstrtobyte
	hitwd
	htoa
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isspace
	isprint
	ispunct
	isupper
	isxdigit
	itoa
	i2c_check_ack
	i2c_init
	i2c_read_char
	i2c_send_ack
	i2c_send_nak
	i2c_start_tx
	i2c_startw_tx
	i2c_stop_tx
	i2c_write_char
	kbhit
	labs
	ldexp
	log
	log_clean
	log_close
	log_condition
	log_format
	log_map
	log_next
	log_open
	log_prev
	log_put
	log_seek
	log10
	longjmp
	loophead
	loopinit
	lsqrt
	ltoa
	ltoan
	lx_format
	mbr_CreatePartition
	mbr_EnumDevice
	mbr_FormatDevice
	mbr_MountPartition
	mbr_UnmountPartition
	mbr_ValidatePartitions
	md5_append
	md5_init
	md5_finish
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf
	nf_eraseBlock
	nf_getPageCount
	nf_getPageSize
	nf_initDevice
	nf_InitDriver
	nf_isBusyRBHW
	nf_isBusyStatus
	nf_readPage
	nf_writePage
	nf_XD_Detect
	OpenInputCompressedFile
	OpenOutputCompressedFile
	OS_ENTER_CRITICAL
	OS_EXIT_CRITICAL
	OSFlagAccept
	OSFlagCreate
	OSFlagDel
	OSFlagPend
	OSFlagPost
	OSFlagQuery
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxDel
	OSMboxPend
	OSMboxPost
	OSMboxPostOpt
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSMutexAccept
	OSMutexCreate
	OSMutexDel
	OSMutexPend
	OSMutexPost
	OSMutexQuery
	OSQAccept
	OSQCreate
	OSQDel
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQPostOpt
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskIdleHook
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTCBInitHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTick
	OSTimeTickHook
	OSVersion
	outchrs
	outstr
	paddr
	paddrDS
	paddrSS
	palloc
	palloc_fast
	pavail
	pavail_fast
	pcalloc
	pfirst
	pfirst_fast
	pfree
	pfree_fast
	phwm
	pktXclose
	pktXgetErrors
	pktXinitBuffers
	pktXopen
	pktXreceive
	pktXsend
	pktXsending
	pktXsetParity
	plast
	plast_fast
	pmovebetween
	pmovebetween_fast
	pnel
	pnext
	pnext_fast
	poly
	pool_append
	pool_init
	pool_link
	pool_xappend
	pool_xinit
	pow
	pow10
	powerspectrum
	pprev
	pprev_fast
	pputlast
	pputlast_fast
	premain
	preorder
	printf
	putchar
	puts
	pwm_init
	pwm_set
	pxalloc
	pxalloc_fast
	pxcalloc
	pxfirst
	pxfirst_fast
	pxfree
	pxfree_fast
	pxlast
	pxlast_fast
	pxnext
	pxnext_fast
	pxprev
	pxprev_fast
	qd_error
	qd_init
	qd_read
	qd_zero
	qsort
	rad
	rand
	randb
	randg
	RdPortE
	RdPortI
	ReadCompressedFile
	read_rtc
	read_rtc_32kHz
	readUserBlock
	readUserBlockArray
	registry_enumerate
	registry_get
	registry_finish_read
	registry_finish_write
	registry_prep_read
	registry_prep_write
	registry_read
	registry_update
	registry_write
	res
	RES
	ResetErrorLog
	root2vram
	root2xmem
	rtc_timezone
	runwatch
	sdspi_debounce
	sdspi_get_csd
	sdspi_get_scr
	sdspi_getSectorCount
	sdspi_get_status_reg
	sdspi_init_card
	sdspi_initDevice
	sdspi_isWriting
	sdspi_notbusy
	sdspi_print_dev
	sdspi_process_command
	sdspi_read_sector
	sdspi_reset_card
	sdspi_sendingAP
	sdspi_setLED
	sdspi_set_block_length
	sdspi_WriteContinue
	sdspi_write_sector
	servo_alloc_table
	servo_closedloop
	servo_disable_0
	servo_disable_1
	servo_enable_0
	servo_enable_1
	servo_gear
	servo_graph
	servo_init
	servo_millirpm2vcmd
	servo_move_to
	servo_openloop
	servo_qd_zero_0
	servo_qd_zero_1
	servo_read_table
	servo_set_coeffs
	servo_set_pos
	servo_set_vel
	servo_stats_reset
	servo_torque
	serCheckParity
	serXclose
	serXdatabits
	serXdmaOff
	serXdmaOn
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXwrFlush
	serXwrFree
	serXwrite
	serXwrUsed
	set
	SET
	set32kHzDivider
	setClockModulation
	set_cpu_power_mode
	setjmp
	SetSerialTATxRValues
	SetVectExtern2000
	SetVectExtern3000
	SetVectExtern4000
	SetVectIntern
	sf_getPageCount
	sf_getPageSize
	sf_init
	sf_initDevice
	sf_isWriting
	sf_pageToRAM
	sf_RAMToPage
	sf_readDeviceRAM
	sf_readPage
	sf_readRAM
	sf_writeDeviceRAM
	sf_writePage
	sf_writeRAM
	sfspi_init
	sin
	sinh
	snprintf
	SPIinit
	SPIRead
	SPIWrite
	SPIWrRd
	sprintf
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcmpi
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	_sysIsSoftReset
	sysResetChain
	tan
	tanh
	TAT1R_SetValue
	tm_rd
	tm_wr
	tolower
	toupper
	updateTimers
	use32kHzOsc
	useClockDivider
	useClockDivider3000
	useMainOsc
	utoa
	vram2root
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	WriteFlash2
	WriteFlash2Array
	write_rtc
	writeUserBlock
	writeUserBlockArray
	WrPortE
	WrPortI
	xalloc
	_xalloc
	xalloc_stats
	xavail
	_xavail
	xCalculateECC256
	xChkCorrectECC256
	xgetfloat
	xgetint
	xgetlong
	xmem2root
	xmem2xmem
	xmemchr
	xmemcmp
	xrelease
	xsetint
	xsetfloat
	xsetlong
	xstrlen

	Software License Agreement

