

ZigBee PRO Home Sensor Demo

Application Note

JN-AN-1122

Revision 2.0

18-Nov-2010

 ZigBee PRO Home Sensor Demo
Application Note

2 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

Contents
About this Document 5

Organisation 5
Conventions 5
Acronyms and Abbreviations 5
Related Documents 6
Feedback Address 6

1 Demonstration Overview and Operation 7
1.1 Functional Overview 7
1.2 Setting up the Demonstration 8

1.2.1 Installing the Application Note 8
1.2.2 Loading the Demonstration 8
1.2.3 Starting the Network 9

1.3 Using the Home Sensor Demonstration 12
1.3.1 Screen Navigation and Environment Monitoring 12
1.3.2 Lighting Control 15
1.3.3 Network Control 16

1.4 Button Functions in Demonstration 17
1.4.1 Controller Board Buttons 17
1.4.2 Sensor Board Buttons 19

2 Application Design 21
2.1 Node Software Architectures 21

2.1.1 Controller Node Architecture 22
2.1.2 Sensor Node Architecture 24

2.2 Node Software Components 26
2.2.1 Controller Node [app_controller_node.c] 26
2.2.2 Buttons [app_buttons.c] 28
2.2.3 LED [app_led.c] 28
2.2.4 Display [app_display.c] 29
2.2.5 Log [app_log.c] 30
2.2.6 Start [app_start.c] 30
2.2.7 Sensor Node Components 31
2.2.8 Sensor Node [app_sensor_node.c / _SED.c] 32
2.2.9 Sample [app_sample.c / _SED.c)] 33
2.2.10 Buttons [app_buttons.c] 34
2.2.11 LED [app_led.c] 34
2.2.12 Start [app_start.c (app_start_SED.c)] 35
2.2.13 System Controller [app_syscon.c] 35

3 Re-building the Application 37
3.1 Preparing for Use on High-Power Modules 37
3.2 Building and Downloading the Application 38

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 3

 ZigBee PRO Home Sensor Demo
Application Note

4 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

About this Document
This document forms part of the Application Note ZigBee PRO Home Sensor Demo
(JN-AN-1122) which contains the source code (and associated files) of the
ZigBee PRO Home Sensor Demonstration. The document describes the
implementation of the demonstration application, providing operational instructions
as well as an overview of the application’s architecture and a description of the
application code.

Organisation
This document consists of three chapters, as follows:

• Chapter 1 introduces the demonstration application and describes its
operation.

• Chapter 2 outlines the application design, including the functions used.

• Chapter 3 describes how to re-build the application and download it to the
hardware.

Conventions
Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier typeface.

Acronyms and Abbreviations
API Application Programming Interface

IDE Integrated Development Environment

ISR Interrupt Service Routine

JenOS Jennic Operating System

PDM Persistent Data Manager

PWRM Power Manager

RTOS Real-time Operating System

SDK Software Developer’s Kit

ZPS ZigBee PRO Stack

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 5

 ZigBee PRO Home Sensor Demo
Application Note

Related Documents
JN-UG-3062 JN5148-EK010 Evaluation Kit User Guide

JN-UG-3048 ZigBee PRO Stack User Guide

JN-UG-3007 JN51xx Flash Programmer User Guide

Feedback Address
If you wish to comment on this document, please provide your feedback by writing to
us (quoting the manual reference number and version) at the following postal
address or e-mail address:

Applications
NXP Laboratories UK Ltd
Furnival Street
Sheffield S1 4QT
United Kingdom

doc@jennic.com

6 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

mailto:doc@jennic.com

ZigBee PRO Home Sensor Demo
Application Note

1 Demonstration Overview and Operation
The ZigBee PRO Home Sensor Demonstration application is intended as an aid to
understanding how an application can be built on top of the ZigBee PRO stack
which runs on the JN5148 device. The application can be loaded into and run on the
boards of a JN5148-EK010 Evaluation Kit.

Note: For details of the evaluation kit, refer to the JN5148-EK 010
Evaluation Kit User Guide (JN-UG-3062). The evaluation kit
boards are pre-loaded with the JenNet version of the Home
Sensor Demonstration, but this can be replaced with the
ZigBee PRO version (see Section 1.2).

1.1 Functional Overview
The Home Sensor Demonstration uses all five boards of the JN5148-EK010
Evaluation Kit – one Controller board and four Sensor boards - to form a syst
monitoring environmental conditions in a small building, typically a house or
apartment, with the boards placed in different rooms. Each board is equipped with a
temperature sensor, a humidity sensor and a light-level sensor. Measurements from
the Sensor boards are periodically sent

em for

to the Controller board, where they can be

ch Sensor

ach
 is

 to

of Sensor boards have joined the network, Permit-Joining is automatically disabled.

displayed on this board’s LCD screen.

The Controller board can also display the 16-bit network address of ea
board and keeps a count of missed frames from each Sensor board.

In addition, a light-switch control feature is included. This allows the buttons on e
Sensor board to remotely control an LED on the Controller board. Similarly, it
possible to control an LED on each Sensor board from the Controller board.

The Controller board acts as the ZigBee PRO network Co-ordinator. It is possible
control the ‘Permit-Joining’ state of the Co-ordinator, provided that the maximum
number of Sensor boards have not joined the network. When the maximum number

Note: This limit currently only affects the Permit-Joining status on
the Co-ordinator. It will still be possible for additional Sensor
boards to join through Router children. However, any sensor data
frames that they generate will be ignored by the Controller board
(Co-ordinator).

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 7

 ZigBee PRO Home Sensor Demo
Application Note

1.2 Setting up the Demonstration

1.2.1 Installing the Application Note
The ZigBee PRO Home Sensor Demo Application Note is supplied in the ZIP file
JN-AN-1122-ZBPro-Home-Sensor-Demo.zip. The contents of this ZIP file should
be extracted into the directory <JN5148_SDK_ROOT>\Application\, where
<JN5148_SDK_ROOT> is the path into which the JN5148 SDK was installed (by
default, this is C:\Jennic). The Application directory is automatically created when
the SDK is installed.

Note: You can obtain the latest versions of the JN5148 SDK
Libraries and Toolchain from www.nxp.com/jennic. The relevant
part codes are JN-SW-4040 for the libraries and JN-SW-4041 for
the toolchain.

1.2.2 Loading the Demonstration
In order to run the demonstration, you must first program the evaluation kit boards
wi

•
ntrollerNode_JN5148.bin supplied

•
ile SensorNode_JN5148.bin supplied in the

• d
de_SED_JN5148.bin

mer,

-UG-3007). This tool can
be launched either directly or from within the Eclipse IDE.

th the application binaries supplied in the Application Note ZIP file, as follows:

The Controller board (with LCD screen) must be programmed as the network
Co-ordinator by loading the binary file Co
in the directory ControllerNode/Build.

The two Sensor boards with SMA connectors must be programmed as
Routers by loading the binary f
directory SensorNode/Build.

The two Sensor boards with integrated PCB antennae must be programme
as End Devices by loading the binary file SensorNo
supplied in the directory SensorNode_SED/Build.

The binaries should be loaded into the boards using the JN51xx Flash Program
which is provided as part of the JN5148 SDK Toolchain (JN-SW-4041) and is
described in the JN51xx Flash Programmer User Guide (JN

Note: If you wish to use the demonstration with high-power
modules, you must re-build the application binaries which are to
be used on the high-power modules, as described in Chapter 3.

8 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

1.2.3 Starting the Network
Once the application binaries are loaded into the evaluation kit boards (as described
in Section 1.2.2), you can assemble the demo system and run the ZigBee PRO
Home Sensor Demonstration as described in the procedure below.

The precise topology of the final wireless network cannot be pre-determined since
the network is formed dynamically. An example system is shown in the figure below.
However, the exact system topology is not important for the operation of the
demonstration.

Parent-Child relationship
Direct radio communication

Co-ordinator
(Controller board)

Router
(Sensor board)

Router
(Sensor board)

End Device
(Sensor board)

End Device
(Sensor board)

Figure 1: Example System

Note: If you have problems with a board (for example, failing to
join the network), you are advised to reset or power-cycle the
board and also clear the data held in its Flash memory. To do
this, hold down the button SW1 and simultaneously reset/power-
cycle the board - see Stack State Persistence on page 17. All the
board LEDs will illuminate once the board has re-started and the
Flash memory data has been erased.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 9

 ZigBee PRO Home Sensor Demo
Application Note

Step 1 Ensure that each board is powered off but has a power source and an antenna

Check that:

a) all the boards are powered off (slide-switch SW6 is in the OFF position)

b) each board either has batteries fitted or is connected to the mains supply via an
external PSU (the jumper J2 must also be in the correct position for the desired
power source – for details, refer to the Reference Manual for the board type)

c) each board with an SMA connector has one of the supplied antennae fitted to
this connector (if you need to attach an antenna, do not over-tighten - finger
pressure will be sufficient)

Step 2 Power on the Controller board
Power on the Controller board using the slide-switch SW6 on the side of the board.

The power LED and the four LEDs D1-D4 will be illuminated, and the Start-up
screen will appear on the LCD screen. In addition, text labels for the four buttons
SW1-SW4 will appear along the lower edge of the screen.

Step 3 Select the radio channel for the network (optional)

If you do not want to operate the network in the default channel for the
demonstration (which is 2400-MHz channel 13), you can use the two middle buttons
(SW2 and SW3) on the Controller board to increase and decrease the channel
number.

Step 4 Start the demonstration on the Controller board
Run the demonstration on the Controller board by pressing the button labelled
‘Done’ on the far right (SW4).

As the Co-ordinator, this board will create the new wireless network. As part of the
network creation process, the Co-ordinator will set the channel to be used by the
network according to the selection made in Step 3.

Once the network has started, the LEDs D1-D4 will be extinguished.

Step 5 Start the Sensor boards
Power on each of the Sensor boards using the slide-switch SW6 on the side of the
board. You are advised to power on the Routers first (the Sensor boards with SMA-
connected antennae).

As each Sensor board powers up, LED D9 on the board will be illuminated.

10 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

The Routers and End Devices will then search for the network and join it. While a
Sensor board is searching for the network, the board’s LEDs D1 and D2 will be
illuminated, but they will be extinguished once the board has joined the network
(LED D2 will subsequently flash every time the board transmits sensor data). As
each board joins the network, it is assigned a name which appears on the LCD
screen of the Controller board - the nodes are assigned the names of rooms in the
home, in the following order: Hall, Bedroom, Lounge, Bathroom. By default, the
temperature measurement from each node will be displayed on the screen - this is
the ‘Temperature’ screen of the Controller board application’s user interface (see the
photo below and refer to Section 1.3.1 for further details of all possible screens).

Step 6 Use the Home Sensor Demonstration

You can now use the Home Sensor Demonstration to obtain temperature, humidity
and light-level measurements from the Sensor boards, as well as remotely
controlling LEDs on the boards. Operation of the demo system is described in
Section 1.3.

Note: If you later wish to re-run the demonstration from scratch
(e.g. with a different topology), you must first clear the context
data that has been automatically saved in Flash memory on the
boards - see Stack State Persistence on page 17. To do this,
hold down the button SW1 and simultaneously reset or power-
cycle the board. All the board LEDs will illuminate once the board
has re-started and the Flash memory data has been erased. You
are advised to begin with the Co-ordinator (Controller board).

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 11

 ZigBee PRO Home Sensor Demo
Application Note

1.3 Using the Home Sensor Demonstration
This section describes how to navigate around the screens of the Home Sensor
Demonstration on the Controller board and how to use the functionality of the
system.

The Home Sensor Demonstration has three sets of functionality:

• Environment monitoring (temperature, humidity, light-level) - see Section 1.3.1

• Lighting control - see Section 1.3.2

• Network control - see Section 1.3.3

Screen navigation is also explained in Section 1.3.1.

1.3.1 Screen Navigation and Environment Monitoring
The sensor readings from the Sensor boards of the demo system are periodically
sent to the Controller board where they can be displayed on the LCD screen. The
application which runs on the Controller board provides a user interface consisting
of a set of information screens that display the sensor data in different ways. This
section describes these screens and how to use the four buttons SW1-SW4 to
navigate around them. This navigation is illustrated in Figure 2 below and the
screens are then described.

Note 1: Once the demo system is up and running as described i n
Section 1.2.3, you will have reached the ‘Temperature’ screen.

 Note 2: The functions of the buttons SW1-SW4 for the various
screens are summarised in Section 1.4.

12 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

Start-up and
Channel
Selection

Temperature
(entire network)

Humidity
(entire network)

Light-level
(entire network)

Hall
(all data)

Bedroom
(all data)

Lounge
(all data)

Humidity

Light

Node

Node

Node

Node

Node

Node

Done

Not Shown:
On all Node screens
below, 'Back' returns to
the last Network screen
you visited (Temperature,
Humidity or Light-level)

Bathroom
(all data)

Node

Not Shown:
From any of the Network
screens above, you can
move directly to another
Network screen by
pressing the relevant
button (Temp, Humidity
or Light)

Figure 2: Screen Navigation on Controller Board

As seen in Figure 2, after the Start-up screen, the information screens are divided
into two groups, Network screens and Node screens, described below.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 13

 ZigBee PRO Home Sensor Demo
Application Note

Network Screens
Each Network screen displays a particular type of sensor data for all network nodes:

• Temperature screen: This screen displays the temperature readings from all
nodes, in degrees Celsius. It is the first screen displayed following the Start-up
screen when the network starts (once the channel has been selected and the
‘Done’ button has been pressed on the Start-up screen).

• Humidity screen: This screen displays the relative humidity readings from all
nodes, as percentages.

• Light-level screen: This screen displays the light-level readings from all
nodes. A light-level reading is represented pictorially by a circle which is
partially filled according to the light-level - a completely filled circle indicates
total darkness and a completely unfilled circle indicates maximum brightness.

Each sensor reading is also displayed as a graph as well as a value/picture.

The network address of each node is also shown as a 4-digit hexadecimal number.
In addition, the ‘Permit-Joining’ status of the Co-ordinator is displayed - see Section
1.3.3.

An example of the ‘Humidity’ screen is shown in Figure 3 below.

Figure 3: Example Network Screen (Humidity)

You can move directly from one Network screen to another Network screen by
pressing the appropriate button on the Controller board (Temp, Humidity or Light).
You can also move to the first Node screen (see below) by pressing the ‘Node’
button.

Node Screens
Each Node screen displays all the sensor readings from a particular node (Hall,
Bedroom, Lounge or Bathroom). The Node screens are accessed by pressing the
‘Node’ button on any of the Network screens. This takes you to the first Node
screen, which is ‘Hall’. Pressing the ‘Node’ button repeatedly then takes you through
the Node screens in rotation: first to the ‘Bedroom’ screen, then to the ‘Lounge’
screen, followed by the ‘Bathroom’ screen and then back to the ‘Hall’ screen.

The Node screens also display the number of messages from the relevant node that
have been missed - this count will increase rapidly if the network has lost the node.

14 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

You can exit the Node screens by pressing the ‘Back’ button, which will take you
back to the last Network screen that you visited.

An example of the ‘Hall’ screen is shown in Figure 4 below.

Figure 4: Example Node Screen (Hall)

The ‘Off’ and ‘On’ buttons are used to control LEDs, as described in Section 1.3.2.

1.3.2 Lighting Control
The Home Sensor Demonstration illustrates wireless lighting control by using a
button on one board to control an LED on another board, thereby providing a
wireless light-switch. Lighting control is implemented in two ways:

• Buttons on a Sensor board are used to control an LED on the Controller
board.

• Buttons on the Controller board are used to control an LED on a nominated
Sensor board.

Controlling an LED on the Controller Board
Buttons SW1 and SW2 on any Sensor board can be used to control one of the four
LEDs on the Controller board. The LEDs controlled from the different Sensor boards
are detailed in the table below.

Sensor Board LED on Controller

Hall D1

Bedroom D2

Lounge D3

Bathroom D4

The buttons SW1 and SW2 on the Sensor boards are used as follows:

• Pressing SW2 illuminates the relevant LED on the Controller board.

• Pressing SW1 extinguishes the relevant LED on the Controller board.

There is no visible effect on the Sensor board itself.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 15

 ZigBee PRO Home Sensor Demo
Application Note

Controlling an LED on a Sensor Board

Once you have navigated on the Controller board to the screen for a particular node
(e.g. Lounge), as described in Section 1.3.1, you can use the buttons SW3 and SW4
on the Controller board to control LED D1 on the remote Sensor node:

• Pressing SW4 (‘On’) illuminates the LED.

• Pressing SW3 (‘Off’) extinguishes the LED.

There is no visible effect on the Controller board or on any of the other Sensor
boards.

1.3.3 Network Control
Two aspects of network functionality can be controlled using the on-board buttons:

• ‘Permit-Joining’ on the Co-ordinator (Controller board)

• ‘Stack state persistence’ on any of the nodes

‘Permit-Joining’ on Co-ordinator
The Co-ordinator (Controller board) allows other nodes to join the network through
it, by default. However, this ‘Permit-Joining’ state can be disabled, in which case the
Co-ordinator will no longer allow other nodes to join the network through it (although
they will still be able to join via the Router nodes, if there are any Routers in the
network).

The ability to disable and re-enable Permit-Joining on the Co-ordinator is provided
through the button SW1 on the (Controller) board. To use this functionality, you must
be on one of the Network screens (Temperature, Humidity or Light-level). Pressing
and holding down button SW1 for 2 seconds will then toggle the Permit-Joining
function - the current setting is shown on the LCD screen as ‘Joining on’ or ‘Joining
off’.

You can use this feature when starting the network, to help force the shape of the
network. For example, to avoid a ‘Star’ network topology, disable Permit-Joining on
the Co-ordinator immediately after the first Router has joined the network -
subsequently, joining nodes will be forced to join the network through the Routers.

If the network attains its maximum number of Sensor boards (4 in this
demonstration), Permit-Joining on the Co-ordinator is automatically disabled and
becomes inaccessible through SW1.

Note: The Permit-Joining status is ignored for a re-join.
Therefore, if a node leaves the network (e.g. as the result of
power-cycling the board) and then attempts to re-join via the Co-
ordinator, the Permit-Joining setting on the Co-ordinator is
bypassed and the re-join is always allowed.

16 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

Stack State Persistence

In this demonstration, the state of the ZigBee PRO stack on a node is maintained
through node reset and power-cycle events. This is done by saving stack and
application context data in non-volatile memory, so that this data can be recovered
by the JN5148 device after a reset or power-cycle. Therefore, following one of these
events, the node will remember and re-take its previous place in the network. You
can, however, make the node forget its previous network status by erasing the
contents of non-volatile memory during a reset or power-cycle. To do this, press any
button on the board (one of SW1-SW4 for the Controller board or SW1-SW2 for a
Sensor board) while pressing the RESET button or power cycling using the ON-OFF
switch (SW6). Once the stored context data has been erased, all the board LEDs
will illuminate (the LEDs will extinguish when the board joins another network and
context data is saved).

1.4 Button Functions in Demonstration
This section summarises the functions of the buttons on the Controller board
(buttons SW1-SW4) and Sensor boards (buttons SW1-SW2) in the ZigBee PRO
Home Sensor Demonstration.

Note: Holding down any one of these buttons while resetting o r
power-cycling the board will cause any stack and application
context data saved in non-volatile memory to be erased - see
Section 1.3.1.

1.4.1 Controller Board Buttons
The tables below summarise the functions of the four buttons SW1-SW4 on the
Controller board in the demonstration.

Start-up Screen

Button Label Function

SW1 Ch 13 (initial label)
w).

Button has no function, but label displays currently selected
channel (which is changed using SW1 and SW2 - see belo

SW2 + Increment channel number (within range 11-26).

SW3 - Decrement channel number (within range 11-26).

SW4 Done Start network (to operate in the selected channel).

Table 1: Button Functions for Start-up Screen

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 17

 ZigBee PRO Home Sensor Demo
Application Note

Node s (H droo)

n

Screen all, Be m, Lounge, Bathroom

Butto Label Function

SW1 Node Go to next Node screen in the cycle:
all... Hall Bedroom Lounge Bathroom H

SW2 Back Go back to last Network screen visited.

SW3 Off Extinguish LED D1 on the currently displayed node (Sensor board).

SW4 On ensor board). Illuminate LED D1 on the currently displayed node (S

Table 2: Button Functions for Node Screens

Netwo ens perat evel)

n

rk Scre (Tem ure, Humidity, Light-l

Butto Label Function

SW1 Node

Holding down this button for 2 seconds toggles the ‘permit joining’ state

Go to first Node screen (for ‘Hall’), which shows all the sensor readings
for that node.

of the Co-ordinator.

SW2 Temp* ture screen, which shows temperature readings (oC) for Go to Tempera
all nodes.

SW3 Humidity* y screen, which shows relative humidity readings (%) for Go to Humidit
all nodes.

SW4 Light* ngs for all nodes. Go to Light-level screen, which shows light-level readi

Table 3: Button Functions for Network Screens
* If label is inverted (dark background), this means you are on the corresponding Network screen.

18 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

1.4.2 Sensor Board Buttons
The table below summarises the functions of the two buttons SW1 and SW2 on the
Sensor boards in the demonstration. These buttons are used to remotely control an
LED on the Controller board, the exact LED depending on the Sensor node (Hall,
Bedroom, Lounge or Bathroom).

Button Sensor Node Function

SW1 Hall Extinguish LED D1 on the Controller board.

 Bedroom Extinguish LED D2 on the Controller board.

 Lounge Extinguish LED D3 on the Controller board.

 Bathroom Extinguish LED D4 on the Controller board.

SW2 Hall Illuminate LED D1 on the Controller board.

 Bedroom Illuminate LED D2 on the Controller board.

 Lounge Illuminate LED D3 on the Controller board.

 Bathroom Illuminate LED D4 on the Controller board.

Table 4: Button Functions for Remote Control of LEDs D1-D4

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 19

 ZigBee PRO Home Sensor Demo
Application Note

20 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

2 Application Design
This chapter describes the application code that runs on the different device types in
the ZigBee PRO Home Sensor Demonstration.

Note 1: In the ZigBee PRO Libraries (JN-SW-4040) release v1.3
and above, the network joining procedure in busy RF locations
should be handled within the application, in order to minimise the
required stack resources. The steps to achieve this are illustrated
in the code for this Application Note and described in the SDK
Libraries Installer v1.3 Release Notes (JN-RN-0023).

 Note 2: By setting the value of the network parameter
apsUseExtendedPanId to zero in the configuration file (using the
ZPS Configuration Editor), the Sensor nodes are configured to try
to join the first suitable network that they discover. However, if
this parameter is set to a non-zero value, the Sensor nodes will
try to join the network with the Extended PAN ID (EPID) specified
by apsUseExtendedPanId.

2.1 Node Software Architectures
Descriptions follow for the Controller and Sensor nodes. Note that there are tw
types of Sensor

o
 node – Router and Sleeping End Device (SED). These Sensor node

types are similar but, where necessary, additional notes detail the differences
between them.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 21

 ZigBee PRO Home Sensor Demo
Application Note

2.1.1 Controller Node Architecture
The architecture of the Controller node application is shown in Figure 5 below.

APP_taskLedControl

APP_taskLogData

APP_taskTogglePermitJoining

APP_taskDisplayUpdate

APP_taskDisplayScroll

APP_taskScanButtons

APP_taskControllerNode

APP_msgLedEvent

APP_msgSensorEvent

APP_msgButtonEvent

APP_msgZpsEvents

APP_tmrDislaySplashScreen

APP_tmrButtonScan

APP_tmrJoiningButton

APP_tmrLogData

From ZPS

TASK

MESSAGE

SOFTWARE TIMER

KEY:

Figure 5: Architecture of Controller Node Application

The Controller node application is implemented in the following tasks:

APP_taskControllerNode
This is the Controller node application’s main task. It is activated by stack events
generated by the ZigBee PRO Stack (ZPS), which posts messages containing the
details of the stack event to the ControllerNode task. It is also activated by
messages posted from the buttons task. The ControllerNode task contains the state
machine necessary to start a network and subsequently function as the application
controller, interpreting button presses and controlling which sensor data is shown on

22 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

the LCD screen. This task is also responsible for sending LED_CONTROL frames to
the Sensor nodes in order to switch the remote LEDs on or off, if the user presses
the appropriate buttons.

APP_taskScanButtons
This task is activated by a software timer, which is itself activated by the System
Controller ISR (Interrupt Service Routine) whenever a button interrupt is generated.
This task de-bounces the buttons. When a button press is successfully de-bounced,
the task generates a BUTTON_UP or BUTTON_DOWN event, and posts a
message to the main Controller task containing details of the button event.

APP_taskLogData
The LogData task implements the SENSOR endpoint, which receives data frames,
containing the sensor measurement data, from the Sensor nodes. When a Sensor
node first sends data to the Controller, the node’s address is registered by the
LogData task and the sensor data is added to a log. The task stores a rolling record
of the last 16 data sets sent by the Sensor node. The task is activated by the ZPS
task, which posts messages containing the details of the data frame. It is also
periodically activated by a software timer, which causes the task to advance the
rolling data log by one interval.

APP_taskDisplayScroll
This task is activated by a software timer, and is used to generate a scrolling title
display on the initial splash screen.

APP_taskDisplayUpdate
The DisplayUpdate task is activated directly by other tasks. The main Controller task
activates it when the display mode has been changed in response to a button press,
and the LogData task activates it when the sensor data has been updated. The task
rebuilds the display using the updated display mode or sensor data.

APP_taskLedControl
This task implements the LED_CONTROL endpoint. It receives LED control frames
from the Sensor nodes, and switches the Controller’s LEDs on or off accordingly.
The task is activated by the ZPS task, which posts messages containing the details
of the data frame. It also receives any confirmations generated when other tasks
send LED Control frames to the sensor nodes, as these outgoing frames are also
sent through the LED_CONTROL endpoint.

APP_taskTogglePermitJoining
This task is activated by a software timer, which is started running when the user
requests the Controller to toggle its Permit-Joining state. The actual functionality is
that Permit-Joining is toggled if button SW1 is pressed for more than two seconds
(when the “Network” display mode is active). The button press starts the software
timer. On expiry, it activates the TogglePermitJoining task. If the button is released
before the 2 seconds have passed, the main Controller task stops the timer before it
expires, preventing this task from being called.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 23

 ZigBee PRO Home Sensor Demo
Application Note

Note: The software timers use the tick-timer. Th e necessary
callbacks are implemented in the common files
app_timer_driver.c and app_timer_driver.h. For further
information on the JenOS software timers, refer to the ZigBee
PRO Stack User Guide (JN-UG-3048).

2.1.2 Sensor Node Architecture
The architecture of the Sensor node application is shown in Figure 6 below:

Router only

Router only

APP_taskLedControl

APP_taskSensorEvent

APP_taskSampleSensors

APP_taskScanButtons

APP_taskSensorNode

APP_msgLedEvent

APP_msgSensorEvent

APP_msgZpsEvents

APP_tmrButtonScan

From ZPS

TASK

MESSAGE

SOFTWARE TIMER

KEY:

APP_tmrSampleSensors

APP_tmrRestart

n

The Sensor node application is implemented in the following tasks:

APP_

e state machine
hich is necessary to discover and join an appropriate network.

Figure 6: Architecture of Sensor Node Applicatio

taskSensorNode
This is the Sensor node application’s main task. It is activated by stack events
generated by the ZPS, which posts messages containing the details of the stack
event to the SensorNode task. The SensorNode task contains th
w

24 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

APP_taskSampleSensors

The SampleSensors task contains a state machine which co-ordinates the taking of
measurements from the node’s light, termperatue and humidity sensors. Upon
completion of the sensor readings, the task sends a SENSOR_DATA frame
containing the readings to the Controller node. If the Sensor node is a Router, this
task is periodically activated by a software timer. If the Sensor node is a Sleeping
End Device, the task is activated on wake-up from within the Wakeup calback.

APP_taskScanButtons
This task is activated by a software timer, which is itself activated by the System
Controller ISR whenever a button interrupt is generated. This task de-bounces the
buttons. When a button press is successfully de-bounced, the task will send an
LED_CONTROL frame to the Controller node, switching the remote LED on or off.

APP_taskLedControl
This task implements the LED_CONTROL endpoint. It receives LED control frames
from the Controller node, and switches an LED on the Senor board on or off
accordingly. The task is activated by the ZPS task, which posts messages
containing the details of the data frame. It also receives any confirmations generated
when other tasks send LED Control frames to the Controller node, as these
outgoing frames are also sent through the LED_CONTROL endpoint.

APP_taskSensorEvent
This is an additional, and trivial, task which exists on Router-Sensor nodes, but not
on SED-Sensor nodes. Both Sensor node types illuminate LED D2 to indicate
activity, but the behaviour is implemented slightly differently on the two node types:

• On SED-Sensor nodes, the LED is illuminated when the device wakes and is
then extinguished when the device goes to sleep.

• On Routers-Sensor nodes, the LED is illuminated when a sensor data frame is
passed to the stack for transmission and is then extinguished when the stack
passes a Confirmation back to the application.

This task implements the SENSOR_DATA endpoint and therefore receives the APS
Confirm event generated by the ZPS after the SENSOR_DATA frame has been
sent. The ZPS posts a message containing the Confirm, and the message activates
the task. The task then switches LED D2 off. It is easy to distinguish a Router from a
SED, as LED D2 flashes briefly on a Router but illuminates more solidly on a SED.

Note: The software timers use the tick-timer. Th e necessary
callbacks are implemented in the common files
app_timer_driver.c and app_timer_driver.h. For further
information on the JenOS software timers, refer to the ZigBee
PRO Stack User Guide (JN-UG-3048).

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 25

 ZigBee PRO Home Sensor Demo
Application Note

2.2 Node Software Components
The Controller node consists of a number of components which correspond to
individual source files. These implement the tasks and ISRs mentioned above in
Controller Node Architecture, contain the various data structures along with access
functions where appropriate, and additional low-level functions such as start-up
routines and power management callbacks.

Table 5 below lists the components and corresponding filenames, and briefly
describes their purpose.

Component File (.c/.h) Purpose

Controller Node app_controller_node Contains the main ControllerNode task, along with
functions necessary to manage network formation and
handling of button events. Responsible for initialisation
of the ZigBee PRO stack and the application.
Generates LED_CONTROL frames.

Buttons app_buttons Contains the ScanButtons task, which debounces
button presses and posts appropriate messages to the
ControllerNode task.

LED app_led Contains the LedControl task, which receives
LED_CONTROL frames, and switches LEDs on and
off.

Display app_display Contains the DisplayUpdate and DisplayScroll tasks,
along with the Display state variable, a number of
access functions and various display maintenance
functions that are called by the two display tasks.

Log app_log Contains the Sensor Log data structure, along with the
LogData task and a number of access functions.

Start app_start Contains the entry point through which the device starts
running after a reset or power-up, and is responsible for
starting the JenOS modules including the RTOS. Also
contains some exception handlers and callbacks for the
Power Manager.

Table 5: Controller Node Components
The Controller node components are described in detail in the sub-sections below.

2.2.1 Controller Node [app_controller_node.c]
This component maintains a data structure that is responsible for the node’s
operational state, its Permit-Joining state, and the radio channel that it is operating
on. This data is registered with the JenOS Persistent Data Manager (PDM), and
therefore persists through resets and power-cycles.

It contains the following tasks and functions:

26 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

APP_vInitialiseControllerNode()
This function is called during start-up. It initialises the hardware, the ZigBee PRO
stack and the application. As part of this initialisation, the initial states of the buttons
are checked. If any buttons are pressed at start-up, a call is made to the PDM
requesting that the entire ZigBee PRO stack and application context is erased from
Flash memory, thus causing a clean start. Otherwise, the function checks if a valid
record has been retrieved from Flash memory by the PDM. If this is the case, the
function re-starts the ZigBee PRO stack and application - the network already exists
and does not need to be formed. If no record is retrieved, the function starts the
ZigBee PRO stack and application from fresh, resulting in the formation of a new
network.

OS_TASK(APP_taskControllerNode)
This is the application’s main task. It collects stack event messages and application
messages, and then, depending on the application’s state, calls one of a number of
lower-level functions to handle the event.

vHandleStartupEvent()
This is the initial state. The function displays the start-up screen before advancing to
the next state.

vHandleConfigureNetworkEvent()
This function changes the radio channel in response to button presses, then starts
the ZigBee PRO stack.

vHandleNetworkFormationEvent()
This function waits for the network to indicate that it has successfully formed, then
sets Permit-Joining to the ON state. It advances the display state machine to the
Network screen, starts the logging module and switches on the LEDs to indicate that
the network has formed. It advances the application state machine to the next state
and then calls the PDM, requesting it to save the ControllerNode’s data record to
Flash memory.

vHandleNetworkScreenEvent()
This function is called when the Network screen mode is active. It responds to
button presses and may start the Permit-Joining toggle timer running, or select
which of the three sensor types (temperature, humidity, light) is being displayed for
the current node. It may also request a change of display from “Network” to “Node”.

vHandleNodeScreenEvent()
This function is called when the Node screen mode is active. It responds to button
presses and may request the Display component to change the Sensor node for
which sensor data is currently being shown. It may also change the display or
initiate sending of an LED_CONTROL frame.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 27

 ZigBee PRO Home Sensor Demo
Application Note

OS_TASK(APP_taskTogglePermitJoining)
If the maximum number of children (Sensor nodes) has not been reached, this task
will toggle the Permit-Joining state and the update the display.

vCheckStackEvent()
This function handles stack events when the network has formed. For most events,
there is no action required.

vHandleLedControlEvent()
vSendLedData()

Between them, these two functions form a data frame containing LED_CONTROL
data and then pass the frame to the ZigBee PRO stack for transmission to a Sensor
node.

2.2.2 Buttons [app_buttons.c]

APP_bButtonInitialise()
This function initialises the DIO lines that the buttons use, setting up levels and
enabling interrupts appropriately.

OS_TASK(APP_taskScanButtons)
This task debounces button presses. It is activated 8 times by a software timer per
button press. After the final call, if the state of the button was constant each time the
task was activated then a button event is generated. A message is posted to the
ControllerNode task with the details of the button event.

2.2.3 LED [app_led.c]

APP_vLedsInitialise()
This function initialises the LEDs, ensures that they are off, and disables the
UART1’s CTS and RTS lines, which share DIO lines with the LEDs.

APP_vLedSet()
This function allows other components to switch LEDs on and off. This is used, for
example, by the Controller Node task to switch all the LEDs off when the network
has been formed.

OS_TASK(APP_taskLedControl)
This task receives messages associated with the LED_CONTROL endpoint. These
contain frames from the Sensor nodes and, according to their content, switch the
corresponding LED (D1-D4) on or off.

28 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

2.2.4 Display [app_display.c]
This component maintains data objects that store the current display state and the
currently selected Sensor node.

APP_vDisplayInitialise()
This function resets the LCD screen.

APP_u8GetCurrentNode()
APP_vDisplayCycleNode()

These two functions provide access to the current selected node object.

APP_vDisplayUpdate()
This function allows other components to request that the display is rebuilt. This will
normally be called after the display mode has been changed or the sensor data has
been updated.

OS_TASK(APP_taskDisplayUpdate)
This task checks the current display mode and then calls the appropriate lower level
functions to rebuild the display.

vBuildSplashScreen()
vUpdateSplashScreen()
vBuildNetworkScreen()
vUpdateNetworkScreen()
vBuildNodeScreen()
vUpdateNodeScreen()
vUpdateSensor()
vDrawGraph()

This group of functions build the display for the various display modes. They use
sensor log data from the LogData component, outputting text and graphics to the
LCD screen accordingly.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 29

 ZigBee PRO Home Sensor Demo
Application Note

2.2.5 Log [app_log.c]
This component maintains data that stores the number of Sensor nodes and their
addresses, and the sensor data itself. The number of Sensor nodes and their
addresses are also persisted in Flash memory via the PDM.

APP_vLogInitialise()
This function sets the number of Sensor nodes to zero before attempting to load any
existing record from Flash memory via the PDM.

APP_vLogStart()
This function starts a software timer that periodically calls the main logging task.

APP_psLogGetSensorNodeHistory()
APP_u8LogGetDataStartPos()
APP_u8GetSensorNodeId()
APP_u16GetSensorNodeAddr()
APP_u8ControllerNodeNumDataSensors()

This group of functions provides access to data structures held by the Log
component.

OS_TASK(APP_taskLogData)
This task is responsible for registering new Sensor nodes when they first start
transmitting data and for storing the sensor data that they send. It implements the
SENSOR_DATA endpoint and receives the corresponding messages from the ZPS.
The task is also periodically activated by a software timer that causes the task to
advance the rolling data set (the last 16 sets of sensor data are stored for each
Sensor node). In this case, the task updates the display after modifying the data set.

2.2.6 Start [app_start.c]

vAppMain()
This is the main code entry point after a reset or power-up. This function is
responsible for initialising certain low-level hardware, such as the UART0 for debug
and the CPU stack overflow monitor. It resets the IEEE 802.15.4 MAC layer and
provides a trap for the watchdog reset event. It then starts the JenOS RTOS.

vAppRegisterPWRMCallbacks()
This function is used to register pre- and post-sleep callback functions with the
Power Manager (PWRM) on Sleeping End Devices. This function must be present
even if it is empty.

30 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

vInitialiseApp()
This function initialises several of the JenOS modules before calling the application’s
main initialisation function.

OS_ISR(APP_isrUnimplementedModuleException)
OS_ISR(APP_isrStackOverflowException)

This is a pair of ISRs (Interrupt Service Routines) for handling CPU exceptions.

2.2.7 Sensor Node Components
A Sensor node consists of a number of components that correspond to individual
source files. These implement the tasks and ISRs mentioned above in Sensor Node
Architecture, and contain the various data structures along with access functions
where appropriate, and additional low-level functions such as start-up routines and
power management callbacks.

Table 6 below lists the components and corresponding filenames, and briefly
describes its purpose. Note that the Router and SED types of Sensor node are
largely the same. However, where different, the filenames for the SED-Sensor node
are shown in brackets.

Component File (.c/.h) Purpose

Sensor Node app_sensor_node
app_sensor_node_SED

Contains the main SensorNode task, along with
functions necessary to manage network discovery and
joining. Responsible for initialisation of the ZigBee
PRO stack and the application.

Sample app_sample
app_sample_SED

Contains the SampleSensors task. This component is
responsible for initialising and controlling the light,
temperature and humidity sensors in order to take
sensor readings. It also generates SENSOR_DATA
frames.

Buttons app_buttons Contains the ScanButtons task, which debounces
button presses and posts appropriate messages to
the ControllerNode task. Generates LED_CONTROL
frames.

LED app_led Contains the LedControl task, which receives
LED_CONTROL frames and switches LEDs on or off.

Start app_start
app_start_SED

Contains the entry point through which the device
starts running after a reset or power-up and is
responsible for starting the JenOS modules including
the RTOS. Also contains some exception handlers
and callbacks for the Power Manager.

System
Controller

app_syscon Contains the System Controller ISR. Identifies the
interrupt source within the System Controller (DIO or
Wake Timers) and activates the appropriate task.

Table 6: Sensor Node Components
The Sensor node components are described in detail below.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 31

 ZigBee PRO Home Sensor Demo
Application Note

2.2.8 Sensor Node [app_sensor_node.c / _SED.c]
This component maintains a data structure that is responsible for the node’s
operational state. This data is registered with the JenOS Persistent Data Manager
(PDM), and therefore persists through resets and power-cycles. The component
contains the following tasks and functions:

APP_vInitialiseSensorNode()
This function is called during start-up. It initialises the hardware, the ZigBee PRO
stack and the application. As part of this initialisation, the initial states of the buttons
are checked. If any buttons are pressed at start-up, a call is made to the PDM
requesting that the entire ZigBee PRO stack and application context is erased from
Flash memory, thus causing a clean start. Otherwise, the function checks if a valid
record has been retrieved from Flash memory by the PDM. If this is the case, the
function re-starts the ZigBee PRO stack and application - the node is already joined
to the network and does not need to perform the joining procedure. If no record is
retrieved, the function starts the ZigBee PRO stack and application from fresh,
causing the node to discover and join a network.

OS_TASK(APP_taskSensorNode)
This is the application’s main task. It collects stack event messages and application
messages, and then, depending on the application’s state, calls one of a number of
lower-level functions to handle the event.

vHandleStartupEvent()
This is the initial state. This function attempts to start the ZigBee PRO stack and
then, if successful, advances the state machine to the next state. If unsuccessful, it
activates the SensorNode task again which results in another attempt.

vHandleNetworkDiscoveryEvent()
This function waits for network discovery to complete. If successful and there is a
suitable ZigBee PRO network for the node to join, the function initiates joining. If no
suitable network is found, network discovery is initiated over the remaining
unscanned channels. If network discovery fails, or if there are no unscanned
channels remaining, then a software timer is started which re-activates the
SensorNode task upon expiry. This causes the discovery and joining process to re-
start from the beginning. If the parameter apsUseExtendedPanID is set to a non-
zero value in the ZPS configuration file then the node will try to join a specific
network using the Network Rejoin command. In this case, the ZigBee PRO stack
performs discovery and rejoining as a single action, and then if successful,
generates a stack event ZPS_EVENT_NWK_JOINED_AS_ROUTER. This causes
the function to save the Sensor node’s persistent data to Flash memory via the PDM
and then advance the state machine to the E_MONITOR_SENSORS state without
explicitly requesting joining.

32 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

vHandleNetworkJoinEvent()
This function waits for joining to complete. Then, if the attempt to join the network
was successful, it switches the LEDs off to indicate that joining has finished,
advances the state machine and then requests the PDM to save its persistent data
record to Flash memory. On a Router, it starts a software timer in order to begin
periodically sampling the sensors. On a SED, it activates the SampleSensors task
directly.

vHandleMonitorSensorsEvent()
This function handles stack events when the network has formed. For most events,
there is no action required. However, on a SED, when an APS Data Confirm is
received, the application requests the JenOS Power Manager (PWRM) to schedule
a sleep.

vHandleNetworkRejoinEvent()
This function starts a network discovery again and sets the state accordingly.

APP_u8GetSequenceNumber()
This function maintains the global APS data frame sequence number. It allows other
components to access the sequence number when they require it, in order to send a
data frame. The function optionally increments the sequence number.

vWakeCallBack()
This function is only present on a SED. It is called when the wake timer expires
(regardless of whether the Power Manager had sent the unit to sleep). It restarts the
SampleSensors task and initiates a poll request.

2.2.9 Sample [app_sample.c / _SED.c)]

APP_vInitialiseSample()
This function initialises the Sensor node hardware.

OS_TASK(APP_taskSampleSensors)
This function contains a state machine which controls the sequence of events
necessary to take light, temperature and humidity measurements from the sensor
devices. On a Router, this task is activated periodically by a software timer. On a
SED, it is activated each time the node wakes from sleep.

VSendSensorData()
This function builds a SENSOR_DATA frame and then passes it to the ZigBee PRO
stack for transmission to the Controller.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 33

 ZigBee PRO Home Sensor Demo
Application Note

OS_TASK(APP_taskSensorEvent)
This task is present only on Router-Sensor nodes. It receives messages associated
with the SENSOR_DATA endpoint – specifically, it looks for APS Data Confirms that
are generated when a SENSOR_DATA frame has been sent. When one is received,
LED D2 is extinguished to indicate that the data transmission has completed.

2.2.10 Buttons [app_buttons.c]

APP_bButtonInitialise()
This function initialises the DIO lines that the buttons use, setting up levels and
enabling interrupts appropriately.

OS_TASK(APP_taskScanButtons)
This task de-bounces button presses. It is activated 8 times by a software timer,
once each time a button is pressed. After the final call, if the state of the button was
constant each time the task was activated then a button event is generated. This is
passed to vHandleButtonEvent().

vHandleButtonEvent()
vSendLedData()

Between them, these two functions form a data frame containing LED_CONTROL
data and then pass the frame to the ZigBee PRO stack for transmission to the
Controller node.

2.2.11 LED [app_led.c]

APP_vLedsInitialise()
This function initialises the LEDs, ensures they are off, and disables the UART1’s
lines, which share DIO lines with the LEDs.

APP_vLedSet()
This function allows other components to switch LEDs on and off. This is used, for
example, by the Sensor node task to switch all the LEDs off when the network has
been joined.

OS_TASK(APP_taskLedControl)
This task receives messages associated with the LED_CONTROL endpoint. These
contain frames from the Controller node and, according to their content, switch LED
D1 on or off.

34 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

2.2.12 Start [app_start.c (app_start_SED.c)]

vAppMain()
This is the main code entry point after a reset or power-up. This function is
responsible for initialising certain low-level hardware, such as the UART for debug
and the CPU stack overflow monitor. It resets the IEEE 802.15.4 MAC layer and
provides a trap for the watchdog reset event. It then starts the JenOS RTOS.

vAppRegisterPWRMCallbacks()
This function is used to register pre- and post-sleep callbacks with the Power
Manager (PWRM) on Sleeping End Devices. The function must be present, even if
empty.

vInitialiseApp()
This function initialises several of the JenOS modules before calling the
Application’s main initialisation function.

OS_ISR(APP_isrUnimplementedModuleException)
OS_ISR(APP_isrStackOverflowException)

This is a pair of ISRs (Interrupt Service Routines) for handling CPU exceptions.

PWRM_CALLBACK(PreSleep)
PWRM_CALLBACK(Wakeup)

This is a pair of callback functions which are present only on the Sleeping End
Device.

• The first callback function is called before going to sleep and is responsible for
saving the MAC settings to a RAM buffer. LED D2 is switched off to indicate
that the device is sleeping.

• The second callback function is called upon waking, and is used to restore the
IEEE 802.15.4 MAC settings, re-initialise the sensor hardware, and re-start the
OS and application. LED D2 is switched on to indicate that the device is
awake.

2.2.13 System Controller [app_syscon.c]

OS_ISR(APP_isrSysCon)
This ISR identifies the interrupt source within the System Controller (DIO or Wake
Timers) and activates the appropriate task.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 35

 ZigBee PRO Home Sensor Demo
Application Note

36 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

3 Re-building the Application
The ZigBee PRO Home Sensor Demonstration is supplied pre-built as binary files in
the ZIP package of the Application Note. This chapter describes how to re-build the
binaries, which you will need to do in either of the following cases:

• You wish to run an application binary on a JN5148 high-power module

• You have made alterations to the source code of the demonstration

If you are re-building to use the demonstration with high-power modules, first refer to
Section 3.1. In either case, re-build as described in Section 3.2.

The instructions in this chapter assume that the Application Note’s directory has
been installed directly under <JN5148_SDK_ROOT>\Application\, where
<JN5148_SDK_ROOT> is the path into which the JN5148 SDK was installed (by
default, this is C:\Jennic). The Application directory is automatically created when
the SDK is installed.

Note: This application uses the ZigBee PRO wireless network
protocol, which is only supported on the JN5148 device. Eclipse
project files for the JN5148 device are provided.

3.1 Preparing for Use on High-Power Modules
To use an application with a JN5148 high-power module, a small modification must

cation. Open this file and un

be made to the application source code and the application must be re-built.

The modification must be made in the source file app_start.c, which can be found in
the Source sub-directory for the relevant appli comment
the

//vAHI_HighPowerModuleEnable(TRUE, TRUE);

hen re-building an

following line in the vAppMain() function:

! Caution: This change must not be made w
application for a standard-power module.

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 37

 ZigBee PRO Home Sensor Demo
Application Note

3.2 Building and Downloading the Application
To build the application in the Eclipse IDE and load the resulting binaries into the
JN5148 boards, follow the instructions below:

1. Ensure that the project directory is located in

<JN5148_SDK_ROOT>\Application
 where <JN5148_SDK_ROOT> is the path into which the SDK was installed.

2. Start the Eclipse platform and import the relevant project files (.project and
.cproject) as follows:

a) In Eclipse, follow the menu path File>Import to display the Import
dialogue box.

b) In the dialogue box, expand General and select Existing Projects into
Workspace.

c) Enable Select root directory and browse to the Application directory.

d) In the Projects box, select the project to be imported.

3. Build the project. To do this, use the drop-down list associated with the

hammer icon in the Eclipse toolbar to select the relevant build
configuration – once selected, the project will automatically build.

 The binary files will be created in the relevant build configuration directory.

4. Load the resulting binary files into the boards from the appropriate build
configuration directory. You can do this using the JN51xx Flash Programmer
(described in the JN51xx Flash Programmer User Guide (JN-UG-3007)),
which can be launched either directly or from within Eclipse.

38 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

ZigBee PRO Home Sensor Demo
Application Note

Revision History
Version Description

1.0 First release

1.1 Added note about handling network joins in application – application code also modified
accordingly

2.0 Demo operational information from JN5148-EK010 Evaluation Kit User Guide (JN-UG-3062)
migrated into Application Note

JN-AN-1122 v2.0 © NXP Laboratories UK 2010 39

 ZigBee PRO Home Sensor Demo
Application Note

Important Notice

Jennic reserves the right to make corrections, modifications, enhancements, improvements and other changes to its
products and services at any time, and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders, and should verify that such information is current and
complete. All products are sold subject to Jennic’s terms and conditions of sale, supplied at the time of order
acknowledgment. Information relating to device applications, and the like, is intended as suggestion only and may
be superseded by updates. It is the customer’s responsibility to ensure that their application meets their own
specifications. Jennic makes no representation and gives no warranty relating to advice, support or customer
product design.

Jennic assumes no responsibility or liability for the use of any of its products, conveys no license or title under any
patent, copyright or mask work rights to these products, and makes no representations or warranties that these
products are free from patent, copyright or mask work infringement, unless otherwise specified.

Jennic products are not intended for use in life support systems/appliances or any systems where product
malfunction can reasonably be expected to result in personal injury, death, severe property damage or
environmental damage. Jennic customers using or selling Jennic products for use in such applications do so at their
own risk and agree to fully indemnify Jennic for any damages resulting from such use.

All trademarks are the property of their respective owners.

 NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951
E-mail: info@jennic.com

For the contact details of your local Jennic office or distributor, refer to the Jennic web site:

 www.nxp.com/jennic

40 © NXP Laboratories UK 2010 JN-AN-1122 v2.0

http://www.nxp.com/jennic

	About this Document
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Feedback Address

	1 Demonstration Overview and Operation
	1.1 Functional Overview
	1.2 Setting up the Demonstration
	1.2.1 Installing the Application Note
	1.2.2 Loading the Demonstration
	1.2.3 Starting the Network

	1.3 Using the Home Sensor Demonstration
	1.3.1 Screen Navigation and Environment Monitoring
	1.3.2 Lighting Control
	1.3.3 Network Control

	1.4 Button Functions in Demonstration
	1.4.1 Controller Board Buttons
	1.4.2 Sensor Board Buttons

	2 Application Design
	2.1 Node Software Architectures
	2.1.1 Controller Node Architecture
	2.1.2 Sensor Node Architecture

	2.2 Node Software Components
	2.2.1 Controller Node [app_controller_node.c]
	2.2.2 Buttons [app_buttons.c]
	2.2.3 LED [app_led.c]
	2.2.4 Display [app_display.c]
	2.2.5 Log [app_log.c]
	2.2.6 Start [app_start.c]
	2.2.7 Sensor Node Components
	2.2.8 Sensor Node [app_sensor_node.c / _SED.c]
	2.2.9 Sample [app_sample.c / _SED.c)]
	2.2.10 Buttons [app_buttons.c]
	2.2.11 LED [app_led.c]
	2.2.12 Start [app_start.c (app_start_SED.c)]
	2.2.13 System Controller [app_syscon.c]

	3 Re-building the Application
	3.1 Preparing for Use on High-Power Modules
	3.2 Building and Downloading the Application

